• Title/Summary/Keyword: building dynamic characteristics

Search Result 372, Processing Time 0.023 seconds

Prediction of Concrete Slab Acceleration and Floor Impact Noise Using Frequency Response Function (주파수 응답함수를 이용한 콘크리트 슬래브 가속도 및 바닥충격소음 예측)

  • Mun, Dae-Ho;Park, Hong-Gun;Hwang, Jae-Seung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.6
    • /
    • pp.483-492
    • /
    • 2014
  • Uncomfortable feelings of occupants by indoor floor impact noise in a residential building are not accurately represented by the floor impact noise from a standard impact source. It is due to the characteristics of standard impact sources, which are different from the impact forces produced by occupants. It varies significantly by impact source, and it is not easy to be replicated for testing. As a result, the indoor floor impact noise under different acoustic conditions cannot be directly compared. Using frequency response function(FRF), which represents the input-output relationships of a dynamic system, it is possible to examine the characteristics of the system. Especially, FRF can predict the response of a linear dynamic system subjected to various excitation. To determine the relationship between impact force and the corresponding response of dynamic system in residential building, the acceleration response of a concrete slab and the floor impact noise in the living room, produced by bang-machine and rubber-ball excitation, were measured. The test results are compared to the estimates based on FRF and impact force spectrum.

Effect of sequential earthquakes on evaluation of non-linear response of 3D RC MRFs

  • Oggu, Praveen;Gopikrishna, K.
    • Earthquakes and Structures
    • /
    • v.20 no.3
    • /
    • pp.279-293
    • /
    • 2021
  • Most of the existing seismic codes for RC buildings consider only a scenario earthquake for analysis, often characterized by the response spectrum at the specified location. However, any real earthquake event often involves occurrences of multiple earthquakes within a few hours or days, possessing similar or even higher energy than the first earthquake. This critically impairs the rehabilitation measures thereby resulting in the accumulation of structural damages for subsequent earthquakes after the first earthquake. Also, the existing seismic provisions account for the non-linear response of an RC building frame implicitly by specifying a constant response modification factor (R) in a linear elastic design. However, the 'R' specified does not address the changes in structural configurations of RC moment-resisting frames (RC MRFs) viz., building height, number of bays present, bay width, irregularities arising out of mass and stiffness changes, etc. resulting in changed dynamic characteristics of the structural system. Hence, there is an imperative need to assess the seismic performance under sequential earthquake ground motions, considering the adequacy of code-specified 'R' in the representation of dynamic characteristics of RC buildings. Therefore, the present research is focused on the evaluation of the non-linear response of medium-rise 3D RC MRFs with and without vertical irregularities under bi-directional sequential earthquake ground motions using non-linear dynamic analysis. It is evident from the results that collapse probability increases, and 'R' reduces significantly for various RC MRFs subjected to sequential earthquakes, pronouncing the vulnerability and inadequacy of estimation of design base shear by code-specified 'R' under sequential earthquakes.

The effects of foundation size on the seismic performance of buildings considering the soil-foundation-structure interaction

  • Nguyen, Quoc Van;Fatahi, Behzad;Hokmabadi, Aslan S.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.1045-1075
    • /
    • 2016
  • Shallow footings are one of the most common types of foundations used to support mid-rise buildings in high risk seismic zones. Recent findings have revealed that the dynamic interaction between the soil, foundation, and the superstructure can influence the seismic response of the building during earthquakes. Accordingly, the properties of a foundation can alter the dynamic characteristics (natural frequency and damping) of the soil-foundation-structure system. In this paper the influence that shallow foundations have on the seismic response of a mid-rise moment resisting building is investigated. For this purpose, a fifteen storey moment resisting frame sitting on shallow footings with different sizes was simulated numerically using ABAQUS software. By adopting a direct calculation method, the numerical model can perform a fully nonlinear time history dynamic analysis to realistically simulate the dynamic behaviour of soil, foundation, and structure under seismic excitations. This three-dimensional numerical model accounts for the nonlinear behaviour of the soil medium and structural elements. Infinite boundary conditions were assigned to the numerical model to simulate free field boundaries, and appropriate contact elements capable of modelling sliding and separation between the foundation and soil elements are also considered. The influence of foundation size on the natural frequency of the system and structural response spectrum was also studied. The numerical results for cases of soil-foundation-structure systems with different sized foundations and fixed base conditions (excluding soil-foundation-structure interaction) in terms of lateral deformations, inter-storey drifts, rocking, and shear force distribution of the structure were then compared. Due to natural period lengthening, there was a significant reduction in the base shears when the size of the foundation was reduced. It was concluded that the size of a shallow foundation influences the dynamic characteristics and the seismic response of the building due to interaction between the soil, foundation, and structure, and therefore design engineer should carefully consider these parameters in order to ensure a safe and cost effective seismic design.

Investigation of 3-D dynamic wind loads on lattice towers

  • Zou, Lianghao;Liang, Shuguo;Li, Q.S.;Zhao, Lin;Ge, Yaojun
    • Wind and Structures
    • /
    • v.11 no.4
    • /
    • pp.323-340
    • /
    • 2008
  • In this paper, the along-wind, across-wind as well as torsional dynamic wind loads on three kinds of lattice tower models are investigated using the base balance technique in a boundary layer wind tunnel. The models were specially designed, and their fundamental frequencies in the directions of the three principal axes are still in the frequency range of the spectra of wind loads on lattice towers. In order to clear contaminations to the spectra of wind loads induced by model resonance, the generalized force spectra of the first mode of the models in along-wind, across-wind and torsional directions were derived based on measured base moments of the models. The RMS generalized force coefficients are also obtained by removing the contributions of model resonance. Finally, the characteristics of the 3-D dynamic wind loads, especially those of the across-wind dynamic loads, on the three kinds of lattice towers are presented and discussed.

Experimenal Study of Dynamic Characteristics of Brace-Typed Dampers using Vibration-resistant Rubbers (방진용 고무를 이용한 가새형 감쇠기의 진동 특성에 관한 실험 연구)

  • 민경원;김진구;조한묵;이성경;호경찬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.381-385
    • /
    • 1998
  • Vibration-resistant rubbers, whose elastic and shear behaviors are similar to viscoelastic materials, are used to make brace-typed dampers to reduce the building vibration. Experimental study is carried out to find the vibration characteristics of the dampers installed in the building model. The natural frequencies and modal damping ratios are obtained from the free vibration test and Fourier analysis. Analytical model of the modal strain energy method are used to find the viscoelastic characteristics of the brace-typed dampers from the experimental results. Finally shaking table test is performed to find the response behavior of the building model under earthquake loading. The present experimental study shows that the brace-typed dampers have the behavior of viscoelastic dampers, which increase the modal damping ratios and viscoelastic characteristics.

  • PDF

Ambient vibration based structural evaluation of reinforced concrete building model

  • Gunaydin, Murat;Adanur, Suleyman;Altunisik, Ahmet C.
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.335-350
    • /
    • 2018
  • This paper presents numerical modelling, modal testing, finite element model updating, linear and nonlinear earthquake behavior of a reinforced concrete building model. A 1/2 geometrically scale, two-storey, reinforced concrete frame model with raft base were constructed, tested and analyzed. Modal testing on the model using ambient vibrations is performed to illustrate the dynamic characteristics experimentally. Finite element model of the structure is developed by ANSYS software and dynamic characteristics such as natural frequencies, mode shapes and damping ratios are calculated numerically. The enhanced frequency domain decomposition method and the stochastic subspace identification method are used for identifying dynamic characteristics experimentally and such values are used to update the finite element models. Different parameters of the model are calibrated using manual tuning process to minimize the differences between the numerically calculated and experimentally measured dynamic characteristics. The maximum difference between the measured and numerically calculated frequencies is reduced from 28.47% to 4.75% with the model updating. To determine the effects of the finite element model updating on the earthquake behavior, linear and nonlinear earthquake analyses are performed using 1992 Erzincan earthquake record, before and after model updating. After model updating, the maximum differences in the displacements and stresses were obtained as 29% and 25% for the linear earthquake analysis and 28% and 47% for the nonlinear earthquake analysis compared with that obtained from initial earthquake results before model updating. These differences state that finite element model updating provides a significant influence on linear and especially nonlinear earthquake behavior of buildings.

Bi-directional response control of a building using one TLD (1 개의 TLD 를 이용한 건물의 양방향 진동제어)

  • Min, Kyung-Won;Lee, Sung-Kyung;Park, Eun-Churn
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.119-124
    • /
    • 2009
  • This paper proposes a tuned liquid column sloshing damper(TLCSD) and presents experimental results to evaluate its control performance. The proposed damper acts as a tuned liquid column damper(TLCD) and a tuned liquid damper(TLD), respectively, in both principal axes of building structures. Shaking table test was performed to grasp its dynamic characteristics. Testing results showed that under inclined incident excitations, a TLCSD used in this study have dynamic characteristics coupled by both TLCD and TLD.

  • PDF

Study of Finite Element Analysis of Tuned Liquid Damper for Seismic Design of High-Rise Building (고층건물 내진설계용 TLD의 유한요소 해석에 관한 연구)

  • Park Seoung-Woo;Cho Jin-Rae;Lee Jae-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.597-602
    • /
    • 2006
  • Many researches have been studied several vibration control device such as TMD and TLD to reduce the influence of wind or seismic waves for high-rise buildings. TLD provides some advantages such as easy installation and low maintenance cost. However, because of the difficulties in evaluating the characteristics of TLD, the dynamic characteristics of TLD must be investigated by experiment or analysis. In this study, the dynamic response analysis of structure with TLD was carried out to verify the vibration control ability of the proposed TLD for high-rise building with about 60 stories. A real seismic wave was used, and the parameter of interest was chosen by the height of water level in the same shape of water tank. From the numerical results, the responses of structure with water tank were confirmed to be safer than those of structure without water tank.

  • PDF

Parametric Analysis of Damping Performance of TLD for Seismic Design of High-Rise Building (고층건물 내진설계용 TLD의 감쇠성능 파라메트릭 해석)

  • Lee, Jae-Hoon;Park, Seong-Woo;Cho, Jin-Rae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.783-788
    • /
    • 2007
  • Many researches have been studied several vibration control device such as TMD and TLD to reduce the influence of wind or seismic waves for high-rise buildings. TLD provides some advantages such as easy installation and low maintenance cost. However, because of the difficulties in evaluating the characteristics of TLD, the dynamic characteristics of TLD must be investigated by experiment or analysis. In this study, the dynamic response analysis of structure with TLD was carried out to verify the vibration control ability of the proposed TLD for high-rise building. The parameter of interest was chosen by the height of the water level and the frequency of input seismic wave in the same shape of water tank.

  • PDF

Experimental System of Active control for Building Structures (구조물의 능동제어 실험을 위한 시스템 구성)

  • 민경원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.274-285
    • /
    • 1998
  • Increasing flexibility and lightness of recently built high-rise buildings make the structures susceptible to loads such as earthquakes and winds. Therefore, higher performance vibration control systems to reduce the vibration levels are demanded more than any time in the past. One of typical active vibration control systems is the active mass damper(AMD). In this paper, an active vibration control system consisting of small shaking table, building model, sensors, signal processing board and AMD is constructed. The dynamic characteristics of these individual systems are investigated through the experimental study. The performance of the active vibration control system is verified through harmonic resonant load excitation on building model.

  • PDF