• 제목/요약/키워드: building data model

검색결과 2,148건 처리시간 0.029초

BIM 모델의 품질검증 사례연구 (Case Study of BIM Quality Assurance)

  • 정연석;이상일;이상호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2010년도 정기 학술대회
    • /
    • pp.379-382
    • /
    • 2010
  • This study proposes a way to validate BIM data quality in BIM applications. Solibri model checker is adopted as a module development platform, which is based on Java programming language. The platform makes application developers implement BIM model checker for their own purpose. This study has developed a BIM validation module for circulation analysis of building design. The validation module enables end-users to automatically detect data corrupted or not defined. In case studies, the module found that an IFC file generated from a BIM software has wrong relation information between a space and boundary elements. A building model should satisfy modeling requirements and then domain users can get analysis results. The BIM data validation module needs to be developed in each BIM application domain.

  • PDF

신경망 모델을 이용한 40MPa, 60MPa 고유동 콘크리트의 최적배합설계 (The Optimum Mix Design of 40MPa, 60MPa High Fluidity Concrete using Neural Network Model)

  • 조성원;조성은;김영수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.223-224
    • /
    • 2021
  • Recently, the demand for high fluidity concrete has been increased due to skyscrapers. However, it has its own limits. First of all, high fluidity concrete has large variation and through trial & error it costs lots of money and time. Neural network model has repetitive learning process which can solve the problem while training the data. Therefore, the purpose of this study is to predict optimum mix design of 40MPa, 60MPa high fluidity concrete by using neural network model and verifying compressive strength by applying real data. As a result, comparing collective data and predicted compressive strength data using MATLAB, 40MPa mix design error rate was 1.2%~1.6% and 60MPa mix design error rate was 2%~3%. Overall 40MPa mix design error rate was less than 60MPa mix design error rate.

  • PDF

대형 언어 모델 기반 신경망을 활용한 강구조물 부재 중량비 예측 (Predicting Steel Structure Product Weight Ratios using Large Language Model-Based Neural Networks)

  • 박종혁;유상현;한수희;김경준
    • 한국전자통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.119-126
    • /
    • 2024
  • 건물 정보 모델(BIM: Building Information Model)은 관련 기업의 개별화된 프로젝트와 학습 데이터양 부족으로 인해 인공지능(AI: Artificial Intelligence) 기반 BIM 애플리케이션 개발이 쉽지 않다. 본 연구에서는 데이터가 제한적인 상황에서 BIM의 강구조물 부재 중량비를 예측하기 위해 사전 학습이 된 대형 언어 모델을 기반으로 신경망을 학습하는 방법을 제시하고 실험하였다. 제안된 모델은 대형 언어 모델을 활용하여 BIM에 내재하는 데이터 부족 문제를 극복할 수 있어 데이터의 양이 부족한 상황에서도 성공적인 학습이 가능하며 대형 언어 모델과 연계된 신경망을 활용하여 자연어와 더불어 숫자 데이터까지 처리할 수 있다. 실험 결과는 제안된 대형 언어 모델 기반 신경망이 기존 소형 언어 모델 기반보다 높은 정확도를 보였다. 이를 통해, 대형 언어 모델이 BIM에 효과적으로 적용될 수 있음이 확인되었으며, 향후 건물 사고 예방 및 건설 비용의 효율적인 관리가 기대된다.

건물의 단기부하 예측을 위한 기상예측 모델 개발 (Development of Weather Forecast Models for a Short-term Building Load Prediction)

  • 전병기;이경호;김의종
    • 한국태양에너지학회 논문집
    • /
    • 제38권1호
    • /
    • pp.1-11
    • /
    • 2018
  • In this work, we propose weather prediction models to estimate hourly outdoor temperatures and solar irradiance in the next day using forecasting information. Hourly weather data predicted by the proposed models are useful for setting system operating strategies for the next day. The outside temperature prediction model considers 3-hourly temperatures forecasted by Korea Meteorological Administration. Hourly data are obtained by a simple interpolation scheme. The solar irradiance prediction is achieved by constructing a dataset with the observed cloudiness and correspondent solar irradiance during the last two weeks and then by matching the forecasted cloud factor for the next day with the solar irradiance values in the dataset. To verify the usefulness of the weather prediction models in predicting a short-term building load, the predicted data are inputted to a TRNSYS building model, and results are compared with a reference case. Results show that the test case can meet the acceptance error level defined by the ASHRAE guideline showing 8.8% in CVRMSE in spite of some inaccurate predictions for hourly weather data.

Extraction of Geometric Components of Buildings with Gradients-driven Properties

  • Seo, Su-Young;Kim, Byung-Guk
    • 한국측량학회지
    • /
    • 제27권1호
    • /
    • pp.723-733
    • /
    • 2009
  • This study proposes a sequence of procedures to extract building boundaries and planar patches through segmentation of rasterized lidar data. Although previous approaches to building extraction have been shown satisfactory, there still exist needs to increase the degree of automation. The methodologies proposed in this study are as follows: Firstly, lidar data are rasterized into grid form in order to exploit its rapid access to neighboring elevations and image operations. Secondly, propagation of errors in raw data is taken into account for in assessing the quality of gradients-driven properties and further in choosing suitable parameters. Thirdly, extraction of planar patches is conducted through a sequence of processes: histogram analysis, least squares fitting, and region merging. Experimental results show that the geometric components of building models could be extracted by the proposed approach in a streamlined way.

교통소음지도 작성을 위한 3차원 도시모델 구축 : 항공 LiDAR와 GIS DB의 혼용 기반 (Extraction of Three-Dimensional Hybrid City Model based on Airborne LiDAR and GIS Data for Transportation Noise Mapping)

  • 박태호;전범석;장서일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.933-938
    • /
    • 2014
  • The combined method utilizing airborne LiDAR and GIS data is suggested to extract 3-dimensional hybrid city model including roads and buildings. Combining the two types of data is more efficient to estimate the elevations of various types of roads and buildings than using either LiDAR or GIS data only. This method is particularly useful to model the overlapped roads around the so called spaghetti junction. The preliminary model is constructed from the LiDAR data, which can give wrong information around the overlapped parts. And then, the erratic vertex points are detected by imposing maximum vertical grade allowable on the elevated roads. For the purpose of efficiency, the erratic vertex points are corrected through linear interpolation method. To avoid the erratic treatment of the LiDAR data on the facades of buildings 2 meter inner-buffer zone is proposed to efficiently estimate the height of a building. It is validated by the mean value (=5.1%) of differences between estimated elevations on 2 m inner buffer zone and randomly observed building elevations.

  • PDF

공동주택 건물 외부공간 및 옥외시설의 공종별 수선비용 산정모델 (Repair Cost Estimation Model of the Building Exterior and Outdoor Facilities in Apartment Housing)

  • 이강희;채창우
    • KIEAE Journal
    • /
    • 제16권3호
    • /
    • pp.129-135
    • /
    • 2016
  • Purpose: Building figuration is imperative to perceive the its value, environmental clean status and form. Therefore, maintenance activities of the building exterior are required to keep the housing condition and value. Each household should pay the repair cost which is brought out in the future. For this repair cost, the estimation model would needed to forecast and provide the required cost. This study aimed at providing the estimation model of the repair cost, using the repair survey data between the 2011 and 2014 in Seoul. Method: For these, it took various estimation function of repair cost such as 1st function, inverse function and so on. These above functions would be applied into the building exterior and outdoor facilities which figure the building shape and characteristics. Result: Results of this study are shown ; First, among 11 estimation models, the power function has a better statistics and goodness-of-fit than any other models. Second, the estimation model with a variable of household has a pattern in upward to the right. On the contrary, the model with management area is little downward to the right. Both of them are depended on the estimated parameter of the power function and the parameter smaller than 1.

효율적 공간 형상화 및 건물성능분석을 위한 스케치 정보 기반 BIM 모델 자동생성 프레임워크 개발 (A Framework Development for Sketched Data-Driven Building Information Model Creation to Support Efficient Space Configuration and Building Performance Analysis)

  • 공병찬;정운성
    • 한국건설관리학회논문집
    • /
    • 제25권1호
    • /
    • pp.50-61
    • /
    • 2024
  • 사용자의 공간 요구사항 중심의 평면계획에 대한 수요가 증가함에 따라 소형 주택시장이 지속적으로 성장하고 있다. 하지만 건축주는 공간 구성이나 비용 견적과 같은 근거를 기반으로 평면요구사항을 개진하는데 매우 제한적인 수단을 활용하고 있어 건축가와 같은 전문가들과의 소통에 많은 어려움을 겪고 있다. 본 연구의 목적은 스케치 정보 기반의 공간 요구사항을 BIM 모델의 3D 건물구성요소로 자동 변환하여 사용자의 공간에 대한 이해를 돕고, 초기 설계단계에서 예산 산정을 지원하기 위한 건물성능분석 정보를 제공할 수 있는 프레임워크 개발에 있다. 본 연구의 방법론은 프로세스 모델 개발, 프레임워크 구현 및 검증단계로 구성되었다. 프로세스 모델 개발은 프레임워크의 데이터 흐름을 묘사하고 프레임워크에 필요한 기능을 정의하는 단계이며, 프레임워크 구현은 프로세스 모델을 기반으로 시스템 인터페이스와 사용자 인터페이스를 개발하고, 이종 시스템 간의 연동 방식을 정의하는 단계이다. 검증단계는 개발된 프레임워크가 스케치 정보로 표현된 공간 요구사항을 BIM 모델의 벽, 바닥, 지붕과 같은 건물 구성요소 객체들로 자동 변환할 수 있는가를 검증하였다. 또한 프레임워크가 BIM 모델을 기반으로 재료 및 에너지 비용을 자동으로 산출할 수 있는가를 검증하였다. 프레임워크를 통해 사용자는 스케치 정보를 기반으로 3D 건물 구성요소를 효율적으로 생성할 수 있으며, 생성된 BIM 모델을 통해 공간을 이해하고 건물성능분석 정보를 제공받을 수 있다.

몬테카를로 시뮬레이션을 활용한 건축물 수선교체주기 신뢰성 분석 모델에 관한 연구 (A study on reliability analysis model of the repair and replacement cycle of a building which utilizes Monte Carlo Simulation)

  • 김종록;정영한;손재호
    • 한국건축시공학회지
    • /
    • 제10권2호
    • /
    • pp.41-50
    • /
    • 2010
  • 본 연구에서는 수선교체이력 자료 및 전문가 의견을 기초데이터로 하고 몬테카를로 시뮬레이션을 활용하여 건축물 수선교체주기에 대한 신뢰성 분석을 가능하게 할 수 있는 모델을 제시하였다. 제시된 모델은 건축물의 경년별 수선교체 시기를 확률적으로 제시하고 건물의 유지관리 계획시 신뢰성분석에 근거한 수선교체시기와 비용수요를 사전에 예측하도록 지원한다. 또한 건물의 소유주체나 유지관리 의사결정권자에게 공통적으로 발생하는 계획상의 많은 리스크를 감소시켜주는 역할을 할 것이다. 더불어 기존건물의 수선교체 이력데이터의 부재로 인해 의사결정에 많은 어려움 겪고 있는 대규모 건물자산의 유지관리책임자가 수선교체소요에 대한 중장기정책 수립시 이에 대한 타당성을 확보할 수 있는 공학적 해법이 제시되었다. 정리하면 크게 다음과 같이 3가지의 연구성과로 나눌 수 있다 첫째, 건축시스템의 발달에 대응할 수 있는 수선교체주기 산정법이 개발되었다. 둘째, 수선교체주기의 리스크를 정량화 시킬 수 있는 확률론적 방법론이 제안되었다. 셋째, 제안된 모델은 건축프로젝트에서 설계자와 시공자가 건물의 생애주기설계에 관한 의사결정을 지원할 수 있는 도구로 활용 가능할 것이다.

건설 인공지능 개발사례로 보는 전공교육 인력의 중요성 (The Importance of Manpower in Major Education as an Example of Artificial Intelligence Development in Construction)

  • 허석재;이상현;이성원;김명훈;정란
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.223-224
    • /
    • 2021
  • The process before the model learning stage in AI R&D can be subdivided into data collection/cleansing-data purification-data labeling. After that, according to the purpose of development, it goes through a stage of verifying the model by performing learning by using the algorithm of the artificial intelligence model. Several studies describe an important part of AI research as the learning stage, and try to increase the accuracy by changing the structure and layer of the AI model. However, if the refinement and labeling process of the learning data is tailored only to the model format and is not made for the purpose of development, the desired AI model cannot be obtained. The latest research reveals that most AI research failures are the failure of the learning data rather than the structure of the AI model. analyzed.

  • PDF