• Title/Summary/Keyword: building connection

Search Result 695, Processing Time 0.023 seconds

Development of New Detachable Connection for Glass Fiber Reinforced Polymer Considering of Short and Long-Term Behavior

  • Park, Don-U;Hwang, Kyung-Ju;Knippers, Jan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.3 s.25
    • /
    • pp.141-151
    • /
    • 2007
  • The appearance of many Glass Fiber Reinforced Plastic (GFRP) constructions look like ordinary steel construction, because GFRP has been imitated by the same way with the traditional steel's cross section as well as connection system. In terms of detachable connection, there was not enough appropriate option of GFRP connection, such as a traditional bolt connection for steel and wood structures. Most of all, from material characteristic of GFRP related to the deficient ductility, the shearstress principle of GFRP s not proper for the material property, which causes ineffective and not economic application of material. With this research problem, the innovative and detachable onnection system, which is more considered with appropriate material characteristic for FRP, is developed. Not only short time but also long time research with various connection variations is carried out.

  • PDF

A study on rotational behaviour of a new industrialised building system connection

  • Moghadasi, Mostafa;Marsono, Abdul Kadir;Mohammadyan-Yasouj, Seyed Esmaeil
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.245-255
    • /
    • 2017
  • The performance of an Industrialised Building System (IBS) consists of prefabricated reinforced concrete components, is greatly affected by the behaviour of the connection between beam and columns. The structural characteristics parameters of a beam-to-column connection like rotational stiffness, strength and ductility can be explained by load-rotation relationship of a full scale H-subframe under gravitational load. Furthermore, the connection's degree of rigidity directly influences the behaviour of the whole frame. In this research, rotational behaviour of a patented innovative beam-to-column connection with unique benefits like easy installation, no wet work, no welding work at assembly site, using a hybrid behaviour of steel and concrete, easy replacement ability, and compatibility with architecture was investigated. The proposed IBS beam-to-column connection includes precast concrete components with embedded steel end connectors. Two full-scale H-subframes constructed with a new IBS and conventional cast in-situ reinforced concrete system beam-to-column connections were tested under incremental static loading. In this paper, load-rotation relationship and ratio of the rigidity of IBS beam-to-column connection are studied and compared with conventional monolithic reinforced concrete connection. It is concluded that this new IBS beam-to-column connection benefits from more rotational ductility than the conventional reinforced concrete connection. Furthermore, the semi-rigid IBS connection rigidity ratio is about 44% of a full rigid connection.

Evaluation of Response Modification Factor of Steel Special Resisting Frame Building Before and After Retrofitted with Buckling Restrained Brace (비좌굴가새의 보강 전과 후의 철골 특수모멘트저항골조 건물의 R계수 평가)

  • Shin, Jiuk;Lee, Kihak;Jo, Yeong Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • This research presents that seismic performance of steel moment resisting frame building designed by past provision(UBC, Uniform Building Code) before and after retrofitted with BRB (Buckling-Restrained Brace) was evaluated using response modification factor (R-factor). In addition, the seismic performance of the retrofitted past building was compared with that specified in current provision. The past building considered two different connections: bilinear connection, which was used by structural engineer for building design, and brittle connection observed in past earthquakes. The nonlinear pushover analysis and time history analysis were performed for the analytical models considered in this study. The R-factor was calculated based on the analytical results. When comparing the R-factor of the current provision with the calculated R-factor, the results were different due to the hysteresis characteristics of the connection types. After retrofitted with BRBs, the past buildings with the bilinear connection were satisfied with the seismic performance of the current provision. However, the past buildings with the brittle connection was significantly different with the R-factor of the current provision.

Anchored blind bolted composite connection to a concrete filled steel tubular column

  • Agheshlui, Hossein;Goldsworthy, Helen;Gad, Emad;Mirza, Olivia
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.115-130
    • /
    • 2017
  • A new type of moment-resisting bolted connection was developed for use in composite steel- concrete construction to connect composite open section steel beams to concrete filled steel square tubular columns. The connection was made possible using anchored blind bolts along with two through bolts. It was designed to act compositely with the in-situ reinforced concrete slab to achieve an enhanced stiffness and strength. The developed connection was incorporated in the design of a medium rise (five storey) commercial building which was located in low to medium seismicity regions. The lateral load resisting system for the design building consisted of moment resisting frames in two directions. A major full scale test on a sub-assembly of a perimeter moment-resisting frame of the model building was conducted to study the system behaviour incorporating the proposed connection. The behaviour of the proposed connection and its interaction with the floor slab under cyclic loading representing the earthquake events with return periods of 500 years and 2500 years was investigated. The proposed connection was categorized as semi rigid for unbraced frames based on the classification method presented in Eurocode 3. Furthermore, the proposed connection, composite with the floor slab, successfully provided adequate lateral load resistance for the model building.

Improvement Plan for Connecting Form of PC Member -Focused on Apartment Buildings- (PC부재의 접합부 거푸집의 개선방안 연구 -공동주택을 중심으로-)

  • Kim, Seon-Hyung;Choi, Jae-Hwi;Kim, Sun-Kuk;Lee, Dong-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.9-12
    • /
    • 2010
  • Conventional apartment building projects have favored wall slab structure for the ease of construction and economic viability. However, wall slab structure, consisting of bearing walls, makes remodeling a difficult challenge. In addition, as the amendment to the Building Act in November, 2005 incentivized easy-to-remodel Rahmen structure design for apartment building in terms of floor area ratio and the number of stories, were are seeing more use of PC construct method in apartment building projects gradually. However, PC construction method requires complex connections between beams and columns, making it difficult to install and remove formwork. Furthermore, it is not possible to reuse forms after removal, generating lots of construction wastes, and it is necessary to install new forms again when the size of connection changes in line with modification of column cross-section. Researchers in Korea and elsewhere in the world have focused on structural performance of connection in PC construction method, with little attention to alternative approaches to improving connection forms for PC construction method. Accordingly, this research aims to study an approach to improving connection forms for PC construction method.

  • PDF

A new precast wall connection subjected to monotonic loading

  • Vaghei, Ramin;Hejazi, Farzad;Taheri, Hafez;Jaafar, Mohd Saleh;Ali, Abang Abdullah Abang
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.1-27
    • /
    • 2016
  • Final construction project cost is significantly determined by construction rate. The Industrialized Building System (IBS) was promoted to enhance the importance of prefabrication technology rather than conventional methods in construction. Ensuring the stability of a building constructed by using IBS is a challenging issue. Accordingly, the connections in a prefabricated building have a basic, natural, and essential role in providing the best continuity among the members of the building. Deficiencies of conventional precast connections were observed when precast buildings experience a large induced load, such as earthquakes and other disasters. Thus, researchers aim to determine the behavior of precast concrete structure with a specific type of connection. To clarify this problem, this study investigates the capacity behavior of precast concrete panel connections for industrial buildings with a new type of precast wall-to-wall connection (i.e., U-shaped steel channel connection). This capacity behavior is compared with the capacity behavior of precast concrete panel connections for industrial buildings that used a common approach (i.e., loop connection), which is subjected to monotonic loading as in-plane and out-of-plane loading by developing a finite element model. The principal stress distribution, deformation of concrete panels and welded wire mesh (BRC) reinforcements, plastic strain trend in the concrete panels and connections, and crack propagations are investigated for the aforementioned connection. Pushover analysis revealed that loop connections have significant defects in terms of strength for in-plane and out-of-plane loads at three translational degrees of freedom compared with the U-shaped steel channel connection.

The mobile and modular GFRP-membrane-structure with the new innovative connection system (새로운 GFRP접합 시스템을 이용한 멤브레인 파빌리옹)

  • Knippers, Jan;Park, Don-U;Hub, Alexander;Hwang, Kyung-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.2 s.16
    • /
    • pp.7-15
    • /
    • 2005
  • Currently, the structural material, namely glass fiber reinforced polymer (GFRP) is focused on innovative structure due to lightness, excellent workability and noncorrosive characteristics, etc. However, the lack of GFRP connection technology produces only an imitation of steel and wood structures. This uses univentive design principles as well as unsuitable material applications, causes tons of surplus of materials to be wasted, and results in uneconomical structures, because the characteristics between steel and GFRP are completely different. Thus, this research develops the new, innovative GFRP connection system with considerations of the characteristics of GFRP and adopts it to a mobile und modular membrane pavilion.

  • PDF

Development of Connection between CFT Column and Pier Foundation for Top-Down Construction (Top-Down 공사용 원형충전강관기둥과 피어기초의 개발)

  • Jeong, Mee-Ra;Rhim, Hong-Chul;Kim, Seung-Weon;Kim, Dong-Gun;Kang, Seung-Ryong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.29-32
    • /
    • 2009
  • Building foundations for Top-Down construction require a special setting, because the foundations have to be placed way before excavation for the substructure of main building, Usually, the foundation goes into the layer of rock and it is often called rock-pier foundation, Currently, a cage of steel reinforcing bars is inserted to the pre-excavated hole in the rock layer, hanging down from the wide flange steel column above. This paper presents a new method for connecting the prefounded column and the steel cage with a coupler for better connection between the two, The use of a circular Concrete Filled Tube (CFT) as a prefounded column makes it possible to have this type of connection. The details of the connection and application to a Top-Down construction site is also included in this paper.

  • PDF

Deformation Demand of the Precast Concrete Frame Buildings with Ductile Connection in Moderate Seismic Regions (연성적인 접합부를 가진 프리캐스트 콘크리트 골조건물의 변형수요)

  • 서수연;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.89-98
    • /
    • 1999
  • This paper evaluates nonlinear response characteristics of precast concrete frame buildings. where plastics hinging occurs in the precast connection. Designs were developed for buildings of 5, 10 and 15 stories in hight for moderate seismic risk regions of the U. S. The responses of the buildings were analyzed using DRAIN-2DX and following Nonlinear static analysis procedure of ATC 19. The main variables of the analyses were the strength and stiffness of the connection. Also, for the analysis, the bi-linear response model, developed and inserted into the DRAIN-2DX program by Shan Shi and D. Fouch, was used. With the results of analysis, the deformation demands of the connection of precast concrete frame buildings are proposed by using equal-dissipated energy capacity. It was shown that the strength of the buildings as well as their displacement capacities decreased with the decrease of either the strength or stiffness in the connections. Therefore such changes also require reductions in the response modification factors for such buildings. However, if the precast concrete frame building has plastic hinging in the connection, and has a more ductile connection than the monolithic frame building, then no reduction in R may be necessary. The deformation demand required of the connection to achieve that condition is evaluated and a simple relation is suggested in the paper.

A Basic Research for Connection Type of Green Frame (Green Frame 접합방식 기초연구)

  • Kim, Keun-Ho;Joo, Jin-Kyu;Lim, Chae-yeon;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.171-172
    • /
    • 2011
  • Green column and green beam, key structural members of green frame, have the characteristics of post-lintel structure, thanks to the steel frame in the connection, enabling prompt and precise installation. The connection of green frame can be divided into 4 types, depending on its shape, and each type is associated with different characteristics and construction methods. Notably, as the connection between green columns have differing types and sequences of work, subject to the connection method in use, a connection method optimized for relevant site conditions need to be selected. Therefore, this study analyzed pros and cons of 4 different types of green frame connection methods. The results set forth herein will provide basic data for subsequent studies to comparatively analyze the performance and constructibility of different green frame connection methods.

  • PDF