Bug report processing is a key element of bug fixing in modern software maintenance. Bug reports are not processed immediately after submission and involve several processes such as bug report deduplication and bug report triage before bug fixing is initiated; however, this method of bug fixing is very inefficient because all these processes are performed manually. Software engineers have persistently highlighted the need to automate these processes, and as a result, many automation techniques have been proposed for bug report processing; however, the accuracy of the existing methods is not satisfactory. Therefore, this study focuses on surveying to improve the accuracy of existing techniques for bug report processing. Reviews of each method proposed in this study consist of a description, used techniques, experiments, and comparison results. The results of this study indicate that research in the field of bug deduplication still lacks and therefore requires numerous studies that integrate clustering and natural language processing. This study further indicates that although all studies in the field of triage are based on machine learning, results of studies on deep learning are still insufficient.
소프트웨어 개발 환경이 빠르게 변화함에 따라 시스템의 복잡성이 증가하고 있다. 이에 따라 크고 작은 소프트웨어의 버그를 피할 수 없게 되며 이를 효율적으로 처리하기 위해 Bug report 를 사용한다. 하지만, Bug report 에서 개발자가 해당 Bug report 의 우선순위를 결정하는 과정은 노력과 비용 그리고 시간을 많이 소모하게 만든다. 따라서, 본 논문에서는 Bug report 내의 Stack trace 를 기반으로 Bug 의 우선순위를 자동적으로 추천하는 기법을 제안한다. 이를 위해 본 연구에서는 첫 번째로 Bug report 로부터 Stack trace 를 추출하였으며 Stack trace 의 3 가지 요소(Exception, Reason 그리고 Stack frame)에 TF-IDF, Word2Vec 그리고 Stack overflow 를 사용하여 특징 벡터를 정의하였다. 그리고 Bug 의 우선순위 추천 모델을 생성하기 위해 4 가지의 Classification 알고리즘을(Random Forest, Decision Tree, XGBoost, SVM)을 적용하였다. 평가에서는 266,292 개의 JDK library 의 Bug report 데이터를 수집하였고 그중 Stack trace 를 가진 Bug report 로부터 68%의 정확도를 산출하였다.
'Commit-bug link', the link between commit history and bug reports, is used for software maintenance and defect prediction in bug tracking systems. Previous studies have shown that the links are automatically detected based on text similarity, time interval, and keyword. Existing approaches depend on the quality of commit history and could thus miss several links. In this paper, we proposed a technique to link commit and bug report using not only messages of commit history, but also the similarity of files in the commit history coupled with bug reports. The experimental results demonstrated the applicability of the suggested approach.
Recently developed software systems have many components, and their complexity is thus increasing. Last year, about 375 bug reports in one day were reported to a software repository in Eclipse and Mozilla open source projects. With so many bug reports submitted, developers' time and efforts have increased unnecessarily. Since the bug severity is manually determined by quality assurance, project manager or other developers in the general bug fixing process, it is biased to them. They might also make a mistake on the manual decision because of the large number of bug reports. Therefore, in this study, we propose an approach of bug severity prediction to solve these problems. First, we find similar topics within a new bug report and reduce the candidate reports of the topic by using the meta field of the bug report. Next, we train the reduced reports by applying Naive Bayes Multinomial. Finally, we predict the severity of the new bug report. We compare our approach with other prediction algorithms by using bug reports in open source projects. The results show that our approach better predicts bug severity than other algorithms.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.3
/
pp.1583-1598
/
2019
Recently, software has increased in complexity and been applied in various industrial fields. As a result, the presence of software bugs cannot be avoided. Various bug severity prediction methodologies have been proposed, but their performance needs to be further improved. In this study, we propose a novel technique for bug severity prediction in cross projects such as Eclipse, Mozilla, WireShark, and Xamarin by using topic modeling and similarity (i.e., KL-divergence). First, we construct topic models from bug repositories in cross projects using Latent Dirichlet Allocation (LDA). Then, we find topics in each project that contain the most numerous similar bug reports by using a new bug report. Next, we extract the bug reports belonging to the selected topics and input them to a Naïve Bayes Multinomial (NBM) algorithm. Finally, we predict the bug severity in the new bug report. In order to evaluate the performance of our approach and to verify the difference between cross projects and single project, we compare it with the Naïve Bayes Multinomial approach; the Lamkanfi methodology, which is a well-known bug severity prediction approach; and an emotional similarity-based bug severity prediction approach. Our approach exhibits a better performance than the compared methods.
Tracking the location of program defects is an essential task for software maintenance and repair. When a bug report is submitted, bug localization is a costly task because of the developer's manual effort. Many researchers have tried to automate the task, but according to the reported results, the performance is still insufficient in practice. Therefore, in this study, we analyzed a large amount of bug report data and the latest research and found that the existing studies used only one preprocessing without considering the characteristics of the bug report. In this paper, to solve the problems mentioned earlier, we propose a pre/post-processing operator selection approach for bug localization.
Recently, software projects have been increasing and getting complex. Due to the large number of submitted bug reports, developers' workload increases. Generally in bug triage process, the triagers assign the bug report to fixer (developer) in order to resolve the bug. However, bug reports have been reassigned to other developers because fixers are not suitable. This is why the triagers did not correctly check and understand the bug report and decide the appropriate developers to fix the bug. This results in increase of developers' time and efforts in software maintenance. To resolve these problems, in this paper, we propose a novel method for developer recommendation based on topic model and social network. First, we build a basis of topic(s) from bug reports. Next, when a new bug report (test data set) comes, we select the most similar topic(s) and extract the participated developers from the topic(s). Finally, by applying social network, we analyze the developers' behavior (comment and commit activity) and recommend the appropriate developers. In this paper we compare our work with related studies through performance experiments on open source projects. The results show that our approach is more effective than other studies in bug triage.
Bug reports are essential documents for developers to localize and fix bugs. These reports contain information regarding software bugs or failures that occur during software operation and maintenance phase. Information Retrieval-based Bug Localization (IR-BL) techniques have been proposed to reduce the time and cost it takes for developers to resolve bug reports. However, if a low-quality bug report is submitted, the performance of such techniques can be significantly degraded. To address this problem, we propose a quality prediction method that selects low-quality bug reports. This process; defines a Quality property of a Bug report as a Query (Q4BaQ) and predicts the quality of the bug reports using machine learning. We evaluated the proposed method with 3 open source projects. The results of the experiment show that the proposed method achieved an average F-measure of 87.31% and outperformed previous prediction techniques by up to 6.62% in the F-measure. Finally, a combination of the proposed method and traditional automatic query reformulation method improved the MRR and MAP by 0.9% and 1.3%, respectively.
Journal of the Institute of Electronics and Information Engineers
/
v.52
no.5
/
pp.235-241
/
2015
Nowadays, research and industry on the internet of things is rapidly developing. Bug fixed field of the Software development related internet of things is a very important things. In this study, we analyze the properties that can affect what the bug fix-time by analyzing the time required to fix a bug associated with the Internet of Things. Using the k-NN classification method based on the attribute information to be classified as bug reports. Extracts a bug report based on the results of a similar property. Bug fixed by calculating the time of a similar bug report predicts the fix-time for new bugs. Depending on the prediction of the properties that affect the bug correction time, the properties of os, component, reporter, and assignee showed the best prediction accuracy.
KIPS Transactions on Software and Data Engineering
/
v.3
no.12
/
pp.511-522
/
2014
During the development of the software, a variety of bugs are reported. Several bug tracking systems, such as, Bugzilla, MantisBT, Trac, JIRA, are used to deal with reported bug information in many open source development projects. Bug reports in bug tracking system would be triaged to manage bugs and determine developer who is responsible for resolving the bug report. As the size of the software is increasingly growing and bug reports tend to be duplicated, bug triage becomes more and more complex and difficult. In this paper, we present an approach to assign bug reports to appropriate developers, which is a main part of bug triage task. At first, words which have been included the resolved bug reports are classified according to each developer. Second, words in newly bug reports are selected. After first and second steps, vectors whose items are the selected words are generated. At the third step, TF-IDF(Term frequency - Inverse document frequency) of the each selected words are computed, which is the weight value of each vector item. Finally, the developers are recommended based on the similarity between the developer's word vector and the vector of new bug report. We conducted an experiment on Eclipse JDT and CDT project to show the applicability of the proposed approach. We also compared the proposed approach with an existing study which is based on machine learning. The experimental results show that the proposed approach is superior to existing method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.