• Title/Summary/Keyword: buckling restrained braced frames

Search Result 46, Processing Time 0.021 seconds

The effects of beam-column connections on behavior of buckling-restrained braced frames

  • Hadianfard, Mohammad Ali;Eskandari, Fateme;JavidSharifi, Behtash
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.309-318
    • /
    • 2018
  • Buckling Restrained Braced (BRB) frames have been widely used as an efficient seismic load resisting system in recent years mostly due to their symmetric and stable hysteretic behavior and significant energy dissipation capacity. In this study, to provide a better understanding of the behavior of BRB frames with various beam-column connections, a numerical study using non-linear finite element (FE) analysis is conducted. All models are implemented in the Abaqus software package following an explicit formulation. Initially, the results of the FE model are verified with experimental data. Then, diverse beam-column connections are modeled for the sake of comparison from the shear capacity, energy dissipation and frame hysteresis behavior points of view until appropriate performance is assessed. The considered connections are divided into three different categories: (1) simple beam-column connections including connection by web angle and connection by seat angle; (2) semi-rigid connection including connection by web and seat angles; and (3) rigid beam-column connections by upper-lower beam plates and beam connections with web and flange splices. Results of the non-linear FE analyses show that these types of beam-column connections have little effect on the maximum story drift and shear capacity of BRB frames. However, the connection type has a significant effect on the amount of energy dissipation and hysteresis behavior of BRB frames. Also, changes in length and thickness of the angles in simple and semi-rigid connections and changes in length and thickness of plates in rigid connections have slight effects (less than 4%) on the overall frame behavior.

Performance-based plastic design of buckling-restrained braced frames with eccentric configurations

  • Elnaz Zare;Mohammad Gholami;Esmail Usefvand;Mojtaba Gorji Azandariani
    • Earthquakes and Structures
    • /
    • v.24 no.5
    • /
    • pp.317-331
    • /
    • 2023
  • The buckling-restrained braced frames with eccentric configurations (BRBFECs) are stable cyclic behavior and high energy absorption capacity. Furthermore, they have an architectural advantage for creating openings like eccentrically braced frames (EBFs). In the present study, it has been suggested to use the performance-based plastic design (PBPD) method to calculate the design base shear of the BRBFEC systems. Moreover, in this study, to reduce the required steel material, it has been suggested to use the performance-based practical design (PBPD) method instead of the force-based design (FBD) method for the design of this system. The 3-, 6-, and 9-story buildings with the BRBFEC system were designed, and the finite element models were modeled. The seismic performance of the models was investigated using two suits of ground motions representing the maximum considered earthquake (MCE) and design basis earthquake (DBE) seismic hazard levels. The results showed that the models designed with the suggested method, which had lower weights compared to those designed with the FBD method, had a desirable seismic performance in terms of maximum story drift and ductility demand under earthquakes at both MCE and DBE seismic hazard levels. This suggests that the steel weights of the structures designed with the PBPD method are about 13% to 18% lesser than the FBD method. However, the residual drifts in these models were higher than those in the models designed with the FBD method. Also, in earthquakes at the DBE hazard level, the residual drifts in all models except the PBPD-6s and PBPD-9s models were less than the allowable reparability limit.

Seismic response of dual structures comprised by Buckling-Restrained Braces (BRB) and RC walls

  • Beiraghi, Hamid
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.443-454
    • /
    • 2019
  • In order to reduce the residual drift of a structure in structural engineering field, a combined structural system (dual) consisting of steel buckling-restrained braced frame (BRBF) along with shear wall is proposed. In this paper, BRBFs are used with special reinforced concrete shear walls as combined systems. Some prototype models of the proposed combined systems as well as steel BRBF-only systems (without walls) are designed according to the code recommendations. Then, the nonlinear model of the systems is prepared using fiber elements for the reinforced concrete wall and appropriate elements for the BRBs. Seismic responses of the combined systems subjected to ground motions at maximum considered earthquake level are investigated and compared to those obtained from BRBFs. Results showed that the maximum residual inter-story drift from the combined systems is, on average, less than half of the corresponding value of the BRBFs. In this research, mean of absolute values of the maximum inter-story drift ratio demand obtained from combined systems is less than the 3% limitation, while this criterion has not been fulfilled by BRBF systems.

Overstrength Factors of Buckling Restrained Braced Frames (좌굴방지가새가 설치된 철골건물의 초과강도계수)

  • Kim, Jin-Koo;Park, Jun-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.67-72
    • /
    • 2004
  • In this study the overstrength factors of medium to low-rise bucking restrained braced frames (BRBF) were evaluated. Various design variables, such as number of stories, span length, yield strength of the brace, level of earthquake load, and the response modification factors. The overstrength factors were obtained using the nonlinear static analysis following the procedure proposed by ATC-19. According to the analysis results, the overstrength factors obtained from this study were generally larger than those proposed in 'AISC/SEAOC Recommended Provisions for BRBF'.

Direct displacement-based seismic design methodology for the hybrid system of BRBFE and self-centering frame

  • Akbar Nikzad;Alireza Kiani;Seyed Alireza Kazerounian
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.463-480
    • /
    • 2023
  • The buckling-restrained braced frames with eccentric configurations (BRBF-Es) exhibit stable cyclic behavior and possess a high energy absorption capacity. Additionally, they offer architectural advantages for incorporating openings, much like Eccentrically Braced Frames (EBFs). However, studies have indicated that significant residual drifts occur in this system when subjected to earthquakes at the Maximum Considered Earthquake (MCE) hazard level. Consequently, in order to mitigate these residual drifts, it is recommended to employ self-centering systems alongside the BRBF-E system. In our current research, we propose the utilization of the Direct Displacement-Based Seismic Design method to determine the design base shear for a hybrid system that combines BRBF with an eccentric configuration and a self-centering frame. Furthermore, we present a methodology for designing the individual components of this composite system. To assess the effectiveness of this design approach, we designed 3-, 6-, and 9-story buildings equipped with the BRBF-E-SCF system and developed finite element models. These models were subjected to two sets of ground motions representing the Maximum Considered Earthquake (MCE) and Design Basis Earthquake (DBE) seismic hazard levels. The results of our study reveal that although the combined system requires a higher amount of steel material compared to the BRBF-E system, it substantially reduces residual drift. Furthermore, the combined system demonstrates satisfactory performance in terms of story drift and ductility demand.

Seismic performance evaluation of buckling restrained braced frames (BRBF) using incremental nonlinear dynamic analysis method (IDA)

  • Khorami, M.;Khorami, M.;Alvansazyazdi, M.;Shariati, M.;Zandi, Y.;Jalali, A.;Tahir, M.M.
    • Earthquakes and Structures
    • /
    • v.13 no.6
    • /
    • pp.531-538
    • /
    • 2017
  • In this paper, the seismic behavior of BRBF structures is studied and compared with special concentric braced frames (SCBF). To this purpose, three BRBF and three SCBF structures with 3, 5 and 10 stories are designed based on AISC360-5 and modelled using OpenSees. These structures are loaded in accordance with ASCE/SEI 7-10. Incremental nonlinear dynamic analysis (IDA) are performed on these structures for 28 different accelerograms and the median IDA curves are used to compare seismic capacity of these two systems. Results obtained, indicates that BRBF systems provide higher capacity for the target performance level in comparison with SCBF systems. And structures with high altitude (in this study, 5 and 10 stories) with the possibility of exceeding the collapse prevention performance level, further than lower altitude (here 3 floors) structures.

Torsional effects in symmetrical steel buckling restrained braced frames: evaluation of seismic design provisions

  • Roy, Jonathan;Tremblay, Robert;Leger, Pierre
    • Earthquakes and Structures
    • /
    • v.8 no.2
    • /
    • pp.423-442
    • /
    • 2015
  • The effects of accidental eccentricity on the seismic response of four-storey steel buildings laterally stabilized by buckling restrained braced frames are studied. The structures have a square, symmetrical footprint, without inherent eccentricity between the center of lateral resistance (CR) and the center of mass (CM). The position of the bracing bents in the buildings was varied to obtain three different levels of torsional sensitivity: low, intermediate and high. The structures were designed in accordance with the seismic design provisions of the 2010 National Building Code of Canada (NBCC). Three different analysis methods were used to account for accidental eccentricity in design: (1) Equivalent Static Procedure with static in-plane torsional moments assuming a mass eccentricity of 10% of the building dimension (ESP); (2) Response Spectrum Analysis with static torsional moments based on 10% of the building dimension (RSA-10); and (3) Response Spectrum Analysis with the CM being displaced by 5% of the building dimension (RSA-5). Time history analyses were performed under a set of eleven two-component historical records. The analyses showed that the ESP and RSA-10 methods can give appropriate results for all three levels of torsional sensitivity. When using the RSA-5 method, adequate performance was also achieved for the low and intermediate torsional sensitivity cases, but the method led to excessive displacements (5-10% storey drifts), near collapse state, for the highly torsionally sensitive structures. These results support the current provisions of NBCC 2010.

Comparison of Energy Demand in Multi-Story Buckling Restrained Braced Frame and Equivalent SDOF System (다층 비좌굴 가새골조와 등가 단자유도계의 에너지 요구량의 비교)

  • 김진구;원영섭
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.173-182
    • /
    • 2003
  • In equivalent static nonlinear analysis and in energy-based design, the structures are generally transformed into an equivalent SDOF system. In this study the seismic energy demands in multi story structures, such as three-, eight-, and twenty-story steel moment-resisting frames(MRF), buckling restrained braced frames(BRBF) and a damage tolerant braced frame(DTBF), are compared with those of equivalent single degree of freedom(ESDOF) systems. Sixty earthquake ground motions recorded In different soil conditions, which are soft rock, soft soil, and neat fault, were used to compute the input and hysteretic energy demands in model structures. In case the modal mass coefficient is less than 0.8, the effects of higher modes are considered in the process of converting into ESDOF According to the analysis results, the hysteretic and input energies obtained from 3 story and 8 story MRF and DTBF agreed well with the results from analysis of equivalent SDOF systems. However in the 20 story BRBF the results from ESDOF underestimated those obtained from the original structures.

Modal pushover analysis of self-centering concentrically braced frames

  • Tian, Li;Qiu, Canxing
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.251-261
    • /
    • 2018
  • Self-centering concentrically braced frames (SCCBFs) are emerging as high performance seismically resistant braced framing system, due to the capacity of withstanding strong earthquake attacks and promptly recovering after events. To get a further insight into the seismic performance of SCCBFs, systematical evaluations are currently conducted from the perspective of modal contributions. In this paper, the modal pushover analysis (MPA) approach is utilized to obtain the realistic seismic demands by summarizing the contribution of each single vibration mode. The MPA-based results are compared with the exact results from nonlinear response history analysis. The adopted SCCBFs originate from existing buckling-restrained braced frames (BRBF), which are also analyzed for purpose of comparison. In the analysis of these comparable framing systems, interested performance indices that closely relate to the structural damage degree include the interstory drift ratio, floor acceleration, and absorbed hysteretic energy. The study shows that the MPA approach produces acceptable predictions in comparison to the exact results for SCCBFs. In addition, the high-modes effect on the seismic behavior increases with the building height, and is more evident in the SCCBFs than the BRBFs.

Prequalification of a set of buckling restrained braces: Part II - numerical simulations

  • Zub, Ciprian Ionut;Stratan, Aurel;Dubina, Dan
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.561-580
    • /
    • 2020
  • Buckling restrained braces (BRBs) were developed as an enhanced alternative to conventional braces by restraining their global buckling, thus allowing development of a stable quasi-symmetric hysteretic response. A wider adoption of buckling restrained braced frames is precluded due to proprietary character of most BRBs and the code requirement for experimental qualification. To overcome these problems, BRBs with capacities corresponding to typical steel multi-storey buildings in Romania were developed and experimentally tested in view of prequalification. In the second part of this paper, a complex nonlinear numerical model for the tested BRBs was developed in the finite element environment Abaqus. The calibration of the numerical model was performed at both component (material models: steel, concrete, unbonding material) and member levels (loading, geometrical imperfections). Geometrically and materially nonlinear analyses including imperfections were performed on buckling restrained braces models under cyclic loading. The calibrated models were further used to perform a parametric study aiming at assessing the influence of the strength of the buckling restraining mechanism, concrete class of the infill material, mechanical properties of steel used for the core, self-weight loading, and frame effect on the cyclic response of buckling restrained braces.