• Title/Summary/Keyword: buckling prediction

Search Result 100, Processing Time 0.023 seconds

Simplified approach to estimate the lateral torsional buckling of GFRP channel beams

  • Kasiviswanathan, M.;Anbarasu, M.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.523-533
    • /
    • 2021
  • The present study investigates the lateral torsional buckling behaviour of pultruded glass fiber reinforced polymer (GFRP) simply supported channel beams subjected to uniform bending about their major axis. A parametric study by varying the sectional geometry and span of channel beams is carried out by using ABAQUS software. The accuracy of the FE models was ensured by verifying them against the available results provided in the literature. The effect of geometric nonlinearity, geometric imperfections, and the dependency of finite element mesh on the lateral torsional buckling were carefully considered in the FE model. Lateral torsional buckling (LTB) strengths obtained from the numerical study were compared with the theoretical LTB strengths obtained based on the Eurocode 3 approach for steel sections. The comparison between the numerical strengths and the design procedure proposed in the literature based on Eurocode 3 approach revealed disagreements. Therefore, a simplified improved design procedure is proposed for the safe design strength prediction of pultruded GFRP channel beams. The proposed equation has been provided that might aid the structural engineers in economically designing the pultruded GFRP channel beams in the future.

A Study on the Buckling Characteristics of Spacer Grids in Pressurized Water Reactor Fuel Assembly (경수로용 핵연료집합체 지지격자의 좌굴특성에 관한 연구)

  • Jeon Sang-Youn;Lee Young-Shin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.4 s.70
    • /
    • pp.405-416
    • /
    • 2005
  • This study contains the static buckling tests and static buckling analyses for small size grids and full size grids. The buckling tests and finite element analyses were performed to evaluate the buckling characteristics of the spacer grids in a pressurized water reactor fuel assembly and to evaluate the possibility of the prediction lot the buckling strength of spacer grids. The buckling tests were performed for small size grids and full size grids, and the correlations between buckling strength and the number of straps and the correlations between buckling strength and the number of rows are derived based on the test results. The static buckling analyses were performed to identify the effect of the number of rows and the number of columns on the buckling strength of spacer grid by a finite element method using ANSYS program and the results were compared with the buckling test results.

Predicting the buckling load of smart multilayer columns using soft computing tools

  • Shahbazi, Yaser;Delavari, Ehsan;Chenaghlou, Mohammad Reza
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.81-98
    • /
    • 2014
  • This paper presents the elastic buckling of smart lightweight column structures integrated with a pair of surface piezoelectric layers using artificial intelligence. The finite element modeling of Smart lightweight columns is found using $ANSYS^{(R)}$ software. Then, the first buckling load of the structure is calculated using eigenvalue buckling analysis. To determine the accuracy of the present finite element analysis, a compression study is carried out with literature. Later, parametric studies for length variations, width, and thickness of the elastic core and of the piezoelectric outer layers are performed and the associated buckling load data sets for artificial intelligence are gathered. Finally, the application of soft computing-based methods including artificial neural network (ANN), fuzzy inference system (FIS), and adaptive neuro fuzzy inference system (ANFIS) were carried out. A comparative study is then made between the mentioned soft computing methods and the performance of the models is evaluated using statistic measurements. The comparison of the results reveal that, the ANFIS model with Gaussian membership function provides high accuracy on the prediction of the buckling load in smart lightweight columns, providing better predictions compared to other methods. However, the results obtained from the ANN model using the feed-forward algorithm are also accurate and reliable.

Simplified method for prediction of elastic-plastic buckling strength of web-post panels in castellated steel beams

  • Liu, Mei;Guo, Kangrui;Wang, Peijun;Lou, Chao;Zhang, Yue
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.671-684
    • /
    • 2017
  • Elastic-plastic shear buckling behaviors of the web-post in a Castellated Steel Beam (CSB) with hexagonal web openings under vertical shear force were investigated further using Finite Element Model (FEM) based on a sub-model, which took the upper part of the web-post under horizontal shear force to represent the whole web-post under vertical shear force. A simplified design method for the web-post elastic-plastic shear buckling strength was proposed based on simulation results of the sub-model. Proper boundary conditions were applied to the sub-model to assure that its behaviors were identical to those of the whole web-post. The equation to calculate the thin plate elastic shear buckling strength was adopted as the basic form to build the design equation for elastic-plastic buckling strength of the sub-model. Parameters that might affect the elastic-plastic shear buckling strength of the whole web-post were studied. After obtaining the vertical shear buckling strength of a sub-model through FEM, the shear buckling coefficient k can be obtained through the back analysis. A practical calculation method for k was proposed through curving fitting the parameter study results. The elastic-plastic shear buckling strength of the web-post calculated using the proposed shear buckling coefficient k agreed well with that obtained from the FEM and test results. And it was more precise than those obtained from EC3 based on the strut model.

Development and Analysis for Micro Actuator Using Buckling Membrane and Phase Change (좌굴과 상변화를 이용한 Micro Actuator의 개발 및 해석)

  • Song, Kwi-Eun;Kim, Jeong-Sik;Kim, Kwang-Ho;Lee, Yoon-Pyol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.638-645
    • /
    • 2004
  • A new micro actuation concept is introduced and studied in this paper. This idea is based on the thermo-pneumatic actuation principle. In order to improve the performance of a conventional thermo-pneumatic actuator, the idea of bistable buckling is added. By using a membrane which has the bistable buckling characteristics, the working pressure difference can be increased and as a result the work output can be increased. The analysis model for each phenomenon, bistable buckling and phase change, are suggested and the each model is verified with experimental data. From the comparison of the theoretical prediction with the experimental results, it can be concluded that these models are useful for such micro actuator analysis.

Numerical Analysis on the Buckling of a Longitudinal Bar in Reinforced Concrete Members (철근 콘크리트 부재의 주근좌굴에 관한 수치해석)

  • 이용택;박재형;이원호;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.87-94
    • /
    • 1993
  • The study summarized in this paper is concerned with the buckling of a longitudinal bar in reinforced concrete members by numerical analysis method. The objectives of this study are to investigate the stress transfer mechanism between concrete and reinforcment and to propose a modeling equation. The result gives an acceptable agreement between the proposed modeling equation and the computer package as follows: (1) the proposed equation is a possible prediction of the strain softening of concrete and reinforcement buckling. (2) the buckling of longitudinal bars is mainly influenced by the spacing of hoops and the location of the bar.

  • PDF

Numerical buckling temperature prediction of graded sandwich panel using higher order shear deformation theory under variable temperature loading

  • Sahoo, Brundaban;Sahoo, Bamadev;Sharma, Nitin;Mehar, Kulmani;Panda, Subrata Kumar
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.641-656
    • /
    • 2020
  • The finite element solutions of thermal buckling load values of the graded sandwich curved shell structure are reported in this research using a higher-order kinematic model including the shear deformation effect. The numerical buckling temperature has been computed using an in-house specialized code (MATLAB environment) prepared in the framework of the current mathematical formulation. In addition, the mathematical model includes the excess structural distortion under the influence of elevated environment via Green-Lagrange nonlinear strain. The corresponding eigenvalue equation has been solved to predict the critical buckling temperature of the graded sandwich structure. The numerical stability and the accuracy of the current solution have been confirmed by comparing with the available published results. Thereafter, the model is extended to bring out the influences of structural parameters i.e. the curvature ratio, core-face thickness ratio, support conditions, power-law indices and sandwich types on the thermal buckling behavior of graded sandwich curved shell panels.

A Study of the Effect of Imperfection on Buckling Strength in Thin Cylindrical Shells under Bending (초기결함의 영향성을 고려한 원통형 쉘의 휨 좌굴 강도 연구)

  • Jang, Min-Seo;Park, Jong-Sup;Lee, Yun-Woo;Kang, Soung-Yong;Kang, Young-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2263-2271
    • /
    • 2015
  • The thin cylindrical shell structure under compression should be checked with buckling stability. Initial imperfection effects on buckling strength has been investigated by many researchers. Even though there have been a number of these studies, more studies of buckling strength with various initial imperfections are still necessary. In Eurocode, there is a design parameter that is applicable only on specific imperfection by section thickness rather than on various initial imperfection. In this study, structural analyses, using geometry and material nonlinear analysis, of cylindrical buckling strength with various initial imperfection were performed and compared with Eurocode design strength and Finite Element Method (FEM) analysis results. Moreover, the modified design parameter, which gives more exact prediction result of buckling strength under bending with initial imperfection, is proposed for various initial imperfections.

Post buckling mechanics and strength of cold-formed steel columns exhibiting Local-Distortional interaction mode failure

  • Muthuraj, Hareesh;Sekar, S.K.;Mahendran, Mahen;Deepak, O.P.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.621-640
    • /
    • 2017
  • This paper reports the numerical investigation conducted to study the influence of Local-Distortional (L-D) interaction mode buckling on post buckling strength erosion in fixed ended lipped channel cold formed steel columns. This investigation comprises of 81 column sections with various geometries and yield stresses that are carefully chosen to cover wide range of strength related parametric ratios like (i) distortional to local critical buckling stress ratio ($0.91{\leq}F_{CRD}/F_{CRL}{\leq}4.05$) (ii) non dimensional local slenderness ratio ($0.88{\leq}{\lambda}_L{\leq}3.54$) (iii) non-dimensional distortional slenderness ratio ($0.68{\leq}{\lambda}_D{\leq}3.23$) and (iv) yield to non-critical buckling stress ratio (0.45 to 10.4). The numerical investigation is carried out by conducting linear and non-linear shell finite element analysis (SFEA) using ABAQUS software. The non-linear SFEA includes both geometry and material non-linearity. The numerical results obtained are deeply analysed to understand the post buckling mechanics, failure modes and ultimate strength that are influenced by L-D interaction with respect to strength related parametric ratios. The ultimate strength data obtained from numerical analysis are compared with (i) the experimental tests data concerning L-D interaction mode buckling reported by other researchers (ii) column strength predicted by Direct Strength Method (DSM) column strength curves for local and distortional buckling specified in AISI S-100 (iii) strength predicted by available DSM based approaches that includes L-D interaction mode failure. The role of flange width to web depth ratio on post buckling strength erosion is reported. Then the paper concludes with merits and limitations of codified DSM and available DSM based approaches on accurate failure strength prediction.

Comparative study of finite element analysis and generalized beam theory in prediction of lateral torsional buckling

  • Sharma, Shashi Kant;Kumar, K.V. Praveen;Akbar, M. Abdul;Rambabu, Dadi
    • Advances in materials Research
    • /
    • v.11 no.1
    • /
    • pp.59-73
    • /
    • 2022
  • In the construction industry, thin-walled frame elements with very slender open cross-sections and low torsional stiffness are often subjected to a complex loading condition where axial, bending, shear and torsional stresses are present simultaneously. Hence, these often fail in instability even before the yield capacity is reached. One of the most common instability conditions associated with thin-walled structures is Lateral Torsional Buckling (LTB). In this study, a first order Generalized Beam Theory (GBT) formulation and numerical analysis of cold-formed steel lipped channel beams (C80×40×10×1, C90×40×10×1, C100×40×10×1, C80×40×10×1.6, C90×40×10×1.6 and C100×40×10×1.6) subjected to uniform moment is carried out to predict pure Lateral Torsional Buckling (LTB). These results are compared with the Finite Element Analysis of the beams modelled with shell elements using ABAQUS and analytical results based on Euler's buckling formula. The mode wise deformed shape and modal participation factors are obtained for comparison of the responses along with the effect of varying the length of the beam from 2.5 m to 10 m. The deformed shapes of the beam for different modes and GBTUL plots are analyzed for comparative conclusions.