• 제목/요약/키워드: buckling capacity

검색결과 393건 처리시간 0.02초

Research on axial bearing capacity of cold-formed thin-walled steel built-up column with 12-limb-section

  • Wentao Qiao;Yuhuan Wang;Ruifeng Li;Dong Wang;Haiying Zhang
    • Steel and Composite Structures
    • /
    • 제47권3호
    • /
    • pp.437-450
    • /
    • 2023
  • A half open cross section built-up column, namely cold-formed thin-walled steel built-up column with 12-limbsection (CTSBC-12) is put forward. To deeply reveal the mechanical behaviors of CTSBC-12 under axial compression and put forward its calculation formula of axial bearing capacity, based on the previous axial compression experimental research, the finite element analysis (FEA) is conducted on 9 CTSBC-12 specimens, and then the variable parameter analysis is carried out. The results show the FEA is in good agreement with the experimental research, the ultimate bearing capacity error is within 10%. When the slenderness ratio is more than 96.54, the ultimate bearing capacity of CTSBC-12 decreases rapidly, and the failure mode changes from local buckling to global buckling. With the local buckling failure mode unchanged, the ultimate bearing capacity decreases gradually as the ratio of web height to thickness increases. Three methods are used for calculating the ultimate bearing capacity, the direct strength method of AISI S100-2007 gives result of ultimate axial load which is closest to the test and FEA results. But for simplicity and practicality, a simplified axial bearing capacity formula is proposed, which has better calculation accuracy with the slenderness ratio changing from 30 to 100.

Experimental study on innovative sections for cold formed steel beams

  • Dar, M.A.;Yusuf, M.;Dar, A.R.;Raju, J.
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1599-1610
    • /
    • 2015
  • Cold Formed Steel members are widely used in today's construction industry. However the structural behavior of light gauge high strength cold formed steel sections characterized by various buckling modes are not yet fully understood. Because of their simple forming and easy connections, the commonly used cold formed sections for beams are C and Z. However both these sections suffer from certain buckling modes. To achieve much improved structural performance of cold formed sections for beams both in terms of strength and stiffness, it is important to either delay or completely eliminate their various modes of buckling. This paper presents various innovative sectional profiles and stiffening arrangements for cold formed steel beams which would successfully contribute in delaying or eliminating various modes of premature buckling, thus considerably improving the load carrying capacity as well as stiffness characteristics of such innovative cold formed sections compared to conventional cold formed steel sections commonly used for beams.

Experimental study of moment redistribution and load carrying capacity of externally prestressed continuous composite beams

  • Chen, Shiming;Jia, Yuanlin;Wang, Xindi
    • Structural Engineering and Mechanics
    • /
    • 제31권5호
    • /
    • pp.605-619
    • /
    • 2009
  • A comparative experimental study of prestressed continuous steel-concrete composite beams was carried out. Two continuous composite beams were tested, one of which was plain continuous steel-concrete composite beam, while the other was a composite beam prestressed with external tendons. Cracking behavior and the load carrying capacity of the beams were investigated experimentally. Full plasticity was developed in the mid-span section each beam, the maximum moments attained at the internal support sections however were governed by local buckling which was related to the slenderness of composite section. It was found that in hogging moment regions, the ultimate resistance of an externally prestressed composite beam would be governed by either distortional lateral buckling or local buckling, or interactive mode of these two buckling patterns. The results show that exerting prestressing on a continuous composite beam with external tendons will increase the extent of internal force and moment redistribution in the beam. The influences of local and distortional buckling on the behaviors of the composite continuous beams are discussed. The Moment redistribution and the load carrying capacity of the prestressed continuous composite beams are evaluated, and it is found that at the ultimate state, the moment redistribution in the prestrssed continuous composite beams is greater than that in non-prestressed composite beams.

Assessment of the performance of composite steel shear walls with T-shaped stiffeners

  • Zarrintala, Hadi;Maleki, Ahmad;Yaghin, Mohammad Ali Lotfollahi
    • Earthquakes and Structures
    • /
    • 제23권3호
    • /
    • pp.297-313
    • /
    • 2022
  • Composite steel plate shear wall (CSPSW) is a relatively novel structural system proposed to improve the performance of steel plate shear walls by adding one or two layers of concrete walls to the infill plate. In addition, the buckling of the infill steel plate has a significant negative effect on the shear strength and energy dissipation capacity of the overall systems. Accordingly, in this study, using the finite element (FE) method, the performance and behavior of composite steel shear walls using T-shaped stiffeners to prevent buckling of the infill steel plate and increase the capacity of CSPSW systems have been investigated. In this paper, after modeling composite steel plate shear walls with and without steel plates with finite element methods and calibration the models with experimental results, effects of parameters such as several stiffeners, vertical, horizontal, diagonal, and a combination of T-shaped stiffeners located in the composite wall have been investigated on the ultimate capacity, web-plate buckling, von-Mises stress, and failure modes. The results showed that the arrangement of stiffeners has no significant effect on the capacity and performance of the CSPSW so that the use of vertical or horizontal stiffeners did not have a significant effect on the capacity and performance of the CSPSW. On the other hand, the use of diagonal hardeners has potentially affected the performance of CSPSWs, increasing the capacity of steel shear walls by up to 25%.

Ultimate behavior of long-span steel arch bridges

  • Cheng, Jin;Jiang, Jian-Jing;Xiao, Ru-Cheng;Xiang, Hai-Fan
    • Structural Engineering and Mechanics
    • /
    • 제14권3호
    • /
    • pp.331-343
    • /
    • 2002
  • Because of the increasing span of arch bridges, ultimate capacity analysis recently becomes more focused both on design and construction. This paper investigates the static and ultimate behavior of a long-span steel arch bridge up to failure and evaluates the overall safety of the bridge. The example bridge is a long-span steel arch bridge with a 550 m-long central span under construction in Shanghai, China. This will be the longest central span of any arch bridge in the world. Ultimate behavior of the example bridge is investigated using three methods. Comparisons of the accuracy and reliability of the three methods are given. The effects of material nonlinearity of individual bridge element and distribution pattern of live load and initial lateral deflection of main arch ribs as well as yield stresses of material and changes of temperature on the ultimate load-carrying capacity of the bridge have been studied. The results show that the distribution pattern of live load and yield stresses of material have important effects on bridge behavior. The critical load analyses based on the linear buckling method and geometrically nonlinear buckling method considerably overestimate the load-carrying capacity of the bridge. The ultimate load-carrying capacity analysis and overall safety evaluation of a long-span steel arch bridge should be based on the geometrically and materially nonlinear buckling method. Finally, the in-plane failure mechanism of long-span steel arch bridges is explained by tracing the spread of plastic zones.

새로운 형태의 리브를 갖는 보강판의 좌굴거동 (Buckling Behavior of Plates Stiffened with the New Type Ribs)

  • 주석범;이필남
    • 한국강구조학회 논문집
    • /
    • 제30권1호
    • /
    • pp.59-66
    • /
    • 2018
  • 본 연구에서는 새로운 형태의 리브(${\Box}$형)를 갖는 보강판의 좌굴거동에 대한 매개변수 해석을 수행하였다. ${\Box}$형 리브의 제원에 따른 좌굴능력의 변화가 일정한 양상을 나타냄에 따라 특정 좌굴하중을 갖는 ${\Box}$형 리브 단면을 구하는 시스템을 제안할 수 있었으며, 이 시스템을 실교량의 강바닥판에 적용하였을 때 기존 폐단면 리브보다 더 경제적인 ${\Box}$형 리브 단면을 많이 얻을 수 있었다. 따라서 본 연구에서 제안한 ${\Box}$형 리브 시스템을 이용하면, 소요 좌굴 능력을 가지면서도 보다 경제적인 강바닥판 설계를 할 수 있을 것으로 판단된다.

Ductile capacity study of buckling-restrained braced steel frame with rotational connections

  • Mingming Jia;Jinzhou He;Dagang Lu
    • Steel and Composite Structures
    • /
    • 제46권3호
    • /
    • pp.417-433
    • /
    • 2023
  • The maximum ductility and cumulative ductility of connection joints of Buckling-Restrained Braced Frames (BRBF) are critical to the structural overall performance, which should be matched with the BRB ductility. The two-story and one-span BRBF with a one-third scale was tested under cyclic quasi-static loading, and the top-flange beam splice (TFBS) rotational connections were proposed and adopted in BRBF. The deformation capacity of TFBS connections was observed during the test, and the relationship between structural global ductility and local connection ductility was studied. The rotational capacity of the beam-column connections and the stability performance of the BRBs are highly relevant to the structural overall performance. The hysteretic curves of BRBF are stable and full under large displacement demand imposed up to 2% story drift, and energy is dissipated as the large plastic deformation developed in the structural components. The BRBs acted as fuses and yielded first, and the cumulative plastic ductility (CPD) of BRBs is 972.6 of the second floor and 439.7 of the first floor, indicating the excellent energy dissipation capacity of BRBs. Structural members with good local ductility ensure the large global ductility of BRBF. The ductile capacity and hysteretic behavior of BRBF with TFBS connections were compared with those of BRBF with Reduced Beam Section (RBS) connections in terms of the experimental results.

해상풍력타워용 버켓기초의 좌굴거동 (Buckling Behaviors of Bucket Foundation for Offshore Wind Tower)

  • 이계희;짠득푸
    • 한국해안·해양공학회논문집
    • /
    • 제25권3호
    • /
    • pp.123-127
    • /
    • 2013
  • 본 논문에서는 해상풍력발전터빈의 기초형식 중 하나인 버켓기초의 관입시 발생할 수 있는 좌굴거동에 대한 연구를 수행하였다. 유한요소를 사용하여 대상구조물을 모델링하고 현재 설계기준의 기본인 원통형 쉘의 좌굴거동을 해석하여, Batdorf의 계수에 따라 설계기준에 제시된 식과 비교하여 모델의 검증을 수행하였다. 검증된 해석 모델을 바탕으로 인접한 지반의 영향 및 하중조건을 적용하고 종방향보강재와 관입깊이가 좌굴성능에 미치는 영향을 평가하였다. 평가결과 종방향보강재의 적용은 특정영역에서 좌굴강도를 크게 증가시키고 인접한 지반의 영향은 관입에 따라 선형적으로 증가하는 것으로 나타났다.

Buckling behavior of cold-formed steel lipped channel beam-column members under monotonic and cyclic loadings

  • Yilmaz Yilmaz;Serhat Demir;Ferhan Ozturk
    • Structural Engineering and Mechanics
    • /
    • 제90권5호
    • /
    • pp.435-446
    • /
    • 2024
  • The use of cold-formed steel members is increasing day by day, especially in regions where earthquake effects are intensively experienced. Among cold-formed steel members (CFS), "channel" members are used more than other crosssectional members, especially in buildings or industrial structures. In recent years, several studies have been carried out on the axial load and flexural performance of these members under monotonic loading. In this study, CFS beam-column members were cyclically and monotonically loaded under combined axial load and biaxial bending moments, and their buckling behavior, load bearing capacity, stiffness, ductility, and energy absorption capacity were determined. For this purpose, monotonic and cyclic loading experiments were carried out on 30 CFS channel members at 15 different eccentricities. Then, material properties were determined by axial monotonic tensile and very low cycle fatigue tests for use in numerical studies. From the experimental results, the buckling modes, bearing capacities, ductility, stiffness, and energy absorption capacities of the members were obtained. The characteristics of the members were compared according to the stress state of the lips. According to the data obtained from the displacement transducer placed on the lips and on the back of the web, information about the buckling mode and curvature of the members was obtained. Finally, monotonic, and cyclic loading results were compared to determine the differences in the buckling behavior of the members.

Member capacity of columns with semi-rigid end conditions in Oktalok space frames

  • Zhao, Xiao-Ling;Lim, Peter;Joseph, Paul;Pi, Yong-Lin
    • Structural Engineering and Mechanics
    • /
    • 제10권1호
    • /
    • pp.27-36
    • /
    • 2000
  • The Oktalok nodal connection system is an aesthetic and efficient system. It has been widely used throughout Australia. The paper will briefly introduce the concept and application of the Oktalok nodal system. The existing design method is based on the assumption that the joints are pin-ended, i.e., the rotational stiffness of the joints is zero. However the ultimate capacity of the frame may increase significantly depending on the rotational stiffness of the joints. Stiffness tests and finite element simulations were carried out to determine the rotational stiffness of the Oktalok joints. Column buckling tests and non-linear finite element analyses were performed to determine the member capacity of columns with semi-rigid end conditions. A simple formulae for the effective length factor of column buckling is derived based on the above experimental and theoretical investigations.