• 제목/요약/키워드: buckling and postbuckling stability

검색결과 9건 처리시간 0.019초

Nonlinear stability of bio-inspired composite beams with higher order shear theory

  • Nazira Mohamed;Salwa A. Mohamed;Alaa A. Abdelrhmaan;Mohamed A. Eltaher
    • Steel and Composite Structures
    • /
    • 제46권6호
    • /
    • pp.759-772
    • /
    • 2023
  • This manuscript presents a comprehensive mathematical model to investigate buckling stability and postbuckling response of bio-inspired composite beams with helicoidal orientations. The higher order shear deformation theory as well as the Timoshenko beam theories are exploited to include the shear influence. The equilibrium nonlinear integro-differential equations of helicoidal composite beams are derived in detail using the energy conservation principle. Differential integral quadrature method (DIQM) is employed to discretize the nonlinear system of differential equations and solve them via the Newton iterative method then obtain the response of helicoidal composite beam. Numerical calculations are carried out to check the validity of the present solution methodology and to quantify the effects of helicoidal rotation angle, elastic foundation constants, beam theories, geometric and material properties on buckling, postbuckling of bio-inspired helicoidal composite beams. The developed model can be employed in design and analysis of curved helicoidal composite beam used in aerospace and naval structures.

Limit point instability of shallow arches under localized sinusoidal loading

  • Ayfer Tekin Atacan
    • Structural Engineering and Mechanics
    • /
    • 제85권5호
    • /
    • pp.665-677
    • /
    • 2023
  • In the present study, the limit point buckling and postbuckling behaviors of sinusoidal, shallow arches with pinned supports subjected to localized sinusoidal loading, based on the Euler-Bernoulli beam theory, are numerically analyzed. There are some studies on the buckling of sinusoidal shallow arches under the effect of sinusoidal loading. However, in these studies, the sinusoidal loading acts along the horizontal projection of the entire shallow arch. No study has been found in the relevant literature pertaining to the stability of the shallow arches subjected to various lengths of sinusoidal loading. Therefore, the purpose of this paper is to contribute to the literature by examining the effect of the length of the localized sinusoidal loading and the initial rise of the shallow arch on the limit point buckling and postbuckling behaviors. Equilibrium paths corresponding to certain values of the length of the localized sinusoidal loading and various values of the initial rise parameter are presented. It has been observed that the length of the sinusoidal loading and the initial rise parameter affects the transition from no buckling to limit point instability remarkably. The deformed configurations of the sinusoidal shallow arch under localized loading regarding buckling and postbuckling states are illustrated, as well. The effects of the length of the localized sinusoidal loading on the internal forces of the shallow arch are investigated during various stages of the loading.

Thermomechanical postbuckling of imperfect moderately thick plates on two-parameter elastic foundations

  • Shen, Hui-Shen
    • Structural Engineering and Mechanics
    • /
    • 제4권2호
    • /
    • pp.149-162
    • /
    • 1996
  • A postbuckling analysis is presented for a simply supported, moderately thick rectangular plate subjected to combined axial compression and uniform temperature loading and resting on a two-parameter elastic foundation. The two cases of thermal postbuckling of initially compressed plates and of compressive postbuckling of initially heated plates are considered. The initial geometrical imperfection of the plate is taken into account. The formulations are based on the Reissner-Mindlin plate theory considering the first order shear deformation effect, and including the plate-foundation interaction and thermal effect. The analysis uses a deflection-type perturbation technique to determine the buckling loads and postbuckling equilibrium paths. Numerical examples cover the performances of perfect and imperfect, moderately thick plates resting on Winkler or Pasternak-type elastic foundations. Typical results are presented in dimensionless graphical form.

Postbuckling strength of an axially compressed elastic circular cylinder with all symmetry broken

  • Fujii, Fumio;Noguchi, Hirohisa
    • Structural Engineering and Mechanics
    • /
    • 제11권2호
    • /
    • pp.199-210
    • /
    • 2001
  • Axially compressed circular cylinders repeat symmetry-breaking bifurcation in the postbuckling region. There exist stable equilibria with all symmetry broken in the buckled configuration, and the minimum postbuckling strength is attained at the deep bottom of closely spaced equilibrium branches. The load level corresponding to such postbuckling stable solutions is usually much lower than the initial buckling load and may serve as a strength limit in shell stability design. The primary concern in the present paper is to compute these possible postbuckling stable solutions at the deep bottom of the postbuckling region. Two computational approaches are used for this purpose. One is the application of individual procedures in computational bifurcation theory. Path-tracing, pinpointing bifurcation points and (local) branch-switching are all applied to follow carefully the postbuckling branches with the decreasing load in order to attain the target at the bottom of the postbuckling region. The buckled shell configuration loses its symmetry stepwise after each (local) branch-switching procedure. The other is to introduce the idea of path jumping (namely, generalized global branch-switching) with static imperfection. The static response of the cylinder under two-parameter loading is computed to enable a direct access to postbuckling equilibria from the prebuckling state. In the numerical example of an elastic perfect circular cylinder, stable postbuckling solutions are computed in these two approaches. It is demonstrated that a direct path jump from the undeformed state to postbuckling stable equilibria is possible for an appropriate choice of static perturbations.

구멍을 가지는 원통형 복합적층 패널의 좌굴 및 좌굴후 거동 (Buckling and Postbuckling Behavior of Cylindrical Composite Panels with a Cutout)

  • 임진승;조명래;양원호
    • 한국자동차공학회논문집
    • /
    • 제7권8호
    • /
    • pp.272-281
    • /
    • 1999
  • Cylindrical panels are widely used as aircraft fuselages and rocket etc, and the cutouts for weight reduction or wiring at such structures tend to cause the stress concentration and the local radial displacement so that seriously effect the stability of structures. In this paper, for the cylindrical composite panel with coutout at the center, the buckling and postbuckling behaviour regarding the shape and size of cutout is analyzed by finite element method. Also the lamination mechanism , changing bending stiffness and fiber orientation angle variation are researched to be regarded in studying the laminated composite materials.

  • PDF

Thermal postbuckling of imperfect Reissner-Mindlin plates with two free side edges and resting on elastic foundations

  • Shen, Hui-Shen
    • Structural Engineering and Mechanics
    • /
    • 제6권6호
    • /
    • pp.643-658
    • /
    • 1998
  • A thermal postbuckling analysis is presented for a moderately thick rectangular plate subjected to uniform or nonuniform tent-like temperature loading and resting on an elastic foundation. The plate is assumed to be simply supported on its two opposite edges and the two side edges remain free. The initial geometrical imperfection of the plate is taken into account. The formulation are based on the Reissner-Mindlin plate theory considering the first order shear deformation effect, and including plate-foundation interaction and thermal effects. The analysis uses a mixed Galerkin-perturbation technique to determine the thermal buckling loads and postbuckling equilibrium paths. Numerical examples are presented that relate to the performances of perfect and imperfect, moderately thick plates resting on Pasternak-type or softening nonlinear elastic foundations from which results for Winker elastic foundations follow as a limiting case. Typical results are presented in dimensionless graphical form.

Exact solutions of vibration and postbuckling response of curved beam rested on nonlinear viscoelastic foundations

  • Nazira Mohamed;Salwa A. Mohamed;Mohamed A. Eltaher
    • Advances in aircraft and spacecraft science
    • /
    • 제11권1호
    • /
    • pp.55-81
    • /
    • 2024
  • This paper presents the exact solutions and closed forms for of nonlinear stability and vibration behaviors of straight and curved beams with nonlinear viscoelastic boundary conditions, for the first time. The mathematical formulations of the beam are expressed based on Euler-Bernoulli beam theory with the von Karman nonlinearity to include the mid-plane stretching. The classical boundary conditions are replaced by nonlinear viscoelastic boundary conditions on both sides, that are presented by three elements (i.e., linear spring, nonlinear spring, and nonlinear damper). The nonlinear integro-differential equation of buckling problem subjected to nonlinear nonhomogeneous boundary conditions is derived and exactly solved to compute nonlinear static response and critical buckling load. The vibration problem is converted to nonlinear eigenvalue problem and solved analytically to calculate the natural frequencies and to predict the corresponding mode shapes. Parametric studies are carried out to depict the effects of nonlinear boundary conditions and amplitude of initial curvature on nonlinear static response and vibration behaviors of curved beam. Numerical results show that the nonlinear boundary conditions have significant effects on the critical buckling load, nonlinear buckling response and natural frequencies of the curved beam. The proposed model can be exploited in analysis of macrosystem (airfoil, flappers and wings) and microsystem (MEMS, nanosensor and nanoactuators).

Thermal post-buckling behavior of imperfect graphene platelets reinforced metal foams plates resting on nonlinear elastic foundations

  • Yin-Ping Li;Gui-Lin She;Lei-Lei Gan;H.B. Liu
    • Earthquakes and Structures
    • /
    • 제26권4호
    • /
    • pp.251-259
    • /
    • 2024
  • In this paper, the thermal post-buckling behavior of graphene platelets reinforced metal foams (GPLRMFs) plate with initial geometric imperfections on nonlinear elastic foundations are studied. First, the governing equation is derived based on the first-order shear deformation theory (FSDT) of plate. To obtain a single equation that only contains deflection, the Galerkin principle is employed to solve the governing equation. Subsequently, a comparative analysis was conducted with existing literature, thereby verifying the correctness and reliability of this paper. Finally, considering three GPLs distribution types (GPL-A, GPL-B, and GPL-C) of plates, the effects of initial geometric imperfections, foam distribution types, foam coefficients, GPLs weight fraction, temperature changes, and elastic foundation stiffness on the thermal post-buckling characteristics of the plates were investigated. The results show that the GPL-A distribution pattern exhibits the best buckling resistance. And with the foam coefficient (GPLs weight fraction, elastic foundation stiffness) increases, the deflection change of the plate under thermal load becomes smaller. On the contrary, when the initial geometric imperfection (temperature change) increases, the thermal buckling deflection increases. According to the current research situation, the results of this article can play an important role in the thermal stability analysis of GPLRMFs plates.

New phenomena associated with the nonlinear dynamics and stability of autonomous damped systems under various types of loading

  • Sophianopoulos, Dimitris S.
    • Structural Engineering and Mechanics
    • /
    • 제9권4호
    • /
    • pp.397-416
    • /
    • 2000
  • The present study deals with the nonlinear dynamics and stability of autonomous dissipative either imperfect potential (limit point) systems or perfect (bifurcational) non-potential ones. Through a fully nonlinear dynamic analysis, performed on two simple 2-DOF models corresponding to the classes of systems mentioned above, and with the aid of basic definitions of the theory of nonlinear dynamical systems, new important phenomena are revealed. For the first class of systems a third possibility of postbuckling dynamic response is offered, associated with a point attractor on the prebuckling primary path, while for the second one the new findings are chaos-like (most likely chaotic) motions, consecutive regions of point and periodic attractors, series of global bifurcations and point attractor response of always existing complementary equilibrium configurations, regardless of the value of the nonconservativeness parameter.