• Title/Summary/Keyword: bubble screen

Search Result 15, Processing Time 0.024 seconds

Experimental Study on Wave Attenuating Effect of a Pneumatic Breakwater by Using a Multiple Parallel Manifold (다중 병렬 분기관을 이용한 압축공기 방파제의 소파효과에 관한 실험적 연구)

  • KIM JONG-WOOK;Shin Hyun-Soo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.257-262
    • /
    • 2004
  • A series of preliminary model tests are performed to find out the wave attenuating effect of the pneumatic breakwater of environment friendly type, which is a bubble screen generated by releasing compressed air from a submerged multiple parallel manifold Rising bubbles induce vertical current, which produces horizontal currents flowing away from the bubble-screen area in both directions. Near bottom, the corresponding currents flow toward the bubble screen, thus completing the circulation pattern. The surface current moving against the direction of wave propagation causes some attenuation of the waves. It becomes more effective as the relative depth (d/ L) increases (short-period waves in deep water). With the same air-discharge, the multiple parallel manifold can be more effective for the attenuation of longer waves through optimum arrangement of manifold number. installation depth, manifold gap, etc. The pneumatic breakwater will give a wide utilization as a device for protecting harbor facilities and as a simple, mobile breakwater.

  • PDF

Modeling of Mesh Screen for Use in Surface Tension Tank Using Flow-3d Software (Flow-3d를 이용한 표면장력 탱크용 메시 스크린 모델링)

  • Kim, Hyuntak;Lim, Sang Hyuk;Yoon, Hosung;Park, Jeong-Bae;Kwon, Sejin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.984-990
    • /
    • 2017
  • Mesh screen modeling and liquid propellant discharge simulation of surface tension tank were performed using commercial CFD software Flow-3d. $350{\times}2600$, $400{\times}3000$ and $510{\times}3600$ DTW mesh screen were modeled using macroscopic porous media model. Porosity, capillary pressure, and drag coefficient were assigned for each mesh screen model, and bubble point simulations were performed. The mesh screen model was validated with the experimental data. Based on the screen modeling, liquid propellant discharge simulation from PMD tank was performed. NTO was assigned as the liquid propellant, and void was set to flow into the tank inlet to achieve an initial volume flow rate of liquid propellant in $3{\times}10^{-3}g$ acceleration condition. The intial flow pressure drop through the mesh screen was approximately 270 Pa, and the pressure drop increased with time. Liquid propellant discharge was sustained until the flow pressure drop reached approximately 630 Pa, which was near the estimated bubble point value of the screen model.

  • PDF

Study on Bubble Collecting Section of Cavitation Tunnel for Ventilated Supercavitation Experiments (환기 초공동 실험을 위한 캐비테이션 터널 기포 포집부 연구)

  • Paik, Bu-Geun;Park, Il-Ryong;Kim, Ki-Sup;Lee, Kurnchul;Kim, Min-Jae;Kim, Kyoung-Youl
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.300-306
    • /
    • 2016
  • The gas ventilated by supercavitation splits into smaller bubbles and follows the water passage of the cavitation tunnel. The bubbles quickly return to the test section by rather high speed flow, and interrupt the observation of the supercavitation. To secure clear observation in the test section, the bubble collecting section(settling chamber) of large volume is prepared to collect bubbles in the water passage ahead of the test section. The bubble collecting section should provide enough buoyancy effect to the bubbles for proper bubble collecting. However, rather high-speed oncoming flow produces non-uniform velocity distribution and deteriorates buoyancy effect in the bubble collecting section. In the present study, the bubble collecting space and three porous plates are designed and analyzed through numerical methods, and the bubble collecting function is experimentally validated by 1/10-scaled model in terms of the formation of uniformly low velocity distribution in the bubble collecting section.

Parameter identification for the bubble point measurement of Liquid Acquisition Device (액체포집장치의 기포점 측정을 위한 변수식별)

  • Jeon, Sang-Eon;Park, Soo-Hyung;Byun, Yung-Hwan;Jung, Young-Suk;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.416-423
    • /
    • 2012
  • Liquid acquisition device in the liquid propellant supply system is required to protect entrance of gas bubble into the propulsion system. The device exploits the capillary effect of micro-sized poles in a screen and supplies pure liquid-phase propellant to the propulsion system. The bubble point is the most important performance parameter in the design of a liquid acquisition device. In this paper, performance parameters affecting the bubble point are identified through literature survey, in order to develop the experimental setup for the bubble point measurement.

  • PDF

Numerical Study on Viscous Wakes of Two-Dimensional Screens Normal to the Uniform Stream (균일유동에 수직인 2차원 스크린 후류의 점성유동에 관한 수치적 연구)

  • 강신형;전우평
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.590-598
    • /
    • 1988
  • Viscous flows through a screen normal to an uniform flow are numerically simulated. A .kappa.-.epsilon. model is adopted for evaluation of the Reynolds stresses. The existence of a screen is regarded as extra sources in the momentum equations. The amount of extra sources is related to the resistance coefficient and the refraction coefficient of the screen. Flows are numerically simulated for various resistance coefficients and heights of the screen and Reynolds numbers. The present method has been verified to reasonably simulate viscous wakes and shear layers of the screen, for which the inviscid theory is quite limitted. As the fluids approach the screen, the velocity is reduced and the pressure is raised to satisfy the Bernoulli equation. After passing the screen, the velocity shows its minimum value at the down-stream, but static pressure is slowly recovered. A detached separation-bubble from the screen appears as the resistance coefficient is increased to a certain level. Such results are qualitatively in agreement with limitted experimental data available. The turbulent kinetic energy shows its maximum value at further down stream and decrease thereafter.

Nonlinear Sound Amplification and Directivity Due to Underwater Bubbles (수중 기포에 의한 비선형 음파의 증폭과 지향성)

  • 김병남;최복경;윤석왕
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.250-260
    • /
    • 2003
  • Since a bubble in water is a highly nonlinear acoustic scatterer, the acoustic scattered waves from underwater bubbles show highly nonlinear acoustic properties. These acoustic scattered waves can be observed at the second or higher harmonics as well as at the fundamental primary frequency of incident acoustic wave. When two primary acoustic waves of different frequencies are incident on a bubble, the acoustic scattered waves can be also observed at the sum and the difference frequencies of the primary waves. In this study, when the two primary acoustic waves were incident on a bubble screen in water, we observed that the amplitude of difference frequency wave was amplified by the bubble nonlinearity and its directivity was oriented in the propagation directions of primary waves. The directivity of scattered difference frequency wave was analyzed as a coherent scattering for virtual source by using the directivity of the primary acoustic wave.

Sensitivity analysis of grid size for bubble flow field analysis using image analysis methods (영상분석기법 기반 기포유동장 해석을 위한 격자의 민감도 분석)

  • Kim, Sung Jung;Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.8
    • /
    • pp.549-559
    • /
    • 2024
  • This study aims to investigate the feasibility of using image analysis methods to examine the flow characteristics of air bubbles discharged underwater. A bubble screen was created using multiple nozzles in a laboratory flume filled with stagnant water. The flow characteristics of the bubbles were analyzed, and the suitability of the analysis method was evaluated. Several parameters, such as projection area ratio and depth ratio, were defined to conduct laboratory experiments and analyze the flow characteristics of the bubbles. Correlation and regression analyses were performed to assess the relationships between various variables. Specifically, the correlation between the bubble's projection area and its rising speed across eight water depth ratios was examined. The results indicated that as the depth ratio increased, the bubble size exhibited a linear increase with a strong correlation as it rose to the water surface due to pressure effects. Regarding the sensitivity of different grid sizes in the ten analysis grids when applying image analysis methods, it was observed that the sensitivity to grid size based on the projection area ratio (0.09~0.96) was not significant. These findings suggest that image analysis techniques can be effectively utilized to observe the flow characteristics of bubbles.

Simulation of Biocube- Fluid Mixture Using Combined Formulation

  • Choi, Hyoung-Gwon;Lee, Myeong-Ho;Yong, Ho-Taek
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1418-1427
    • /
    • 2004
  • Combined formulation developed for the fluid-particle mixture is introduced to simulate the biocube-fluid mixture flow, which is utilized for sewage disposal. Some tricky boundary conditions are introduced in order to simulate the effect of screen wall and air bubble, which is injected from the bottom of sewage reservoir. It has been shown that a circulated flow pattern, which was observed in experiment, is reproduced from the present numerical simulation. Furthermore, the effect of biocube density on the distribution pattern of biocube is also studied. It has been shown that a biocube whose density is slightly smaller than that of surrounding fluid or neutrally buoyant one are optimal for the uniform distribution of biocube.

Interaction of two sound waves with bubble screen as a nonlinear medium (비선형 매질로서 기포막과 두 음파의 상호작용)

  • Kim B. N.;Yoon S. W.;Choi B. K.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.185-188
    • /
    • 1999
  • 수중에서 기포의 강한 비선형성을 이용하여 기포막상의 두 입사 음파의 상호작용 영역으로부터 산란된 차주파수 성분 음파의 확인과 두 입사 음파의 전파방향으로 차주파수 음파가 분포하고 있음을 관측하였다 본 논문에서는 기포막을 이용하여 두 입사 음파의 상호작용 영역으로부터 산란된 차주파수 성분 음파의 지향특성을 예측할 수 있음을 제시하였다.

  • PDF

The Effect of Temperature, Cooling and Surface Tension on the Fining in Alkali-Alkaline Earth-Silica Glassmelts Containing ZnO

  • Kim, Ki-Dong
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.176-182
    • /
    • 1998
  • The effects of temperature, cooling surface tension on the fining were studied in alkali-alkaline earth-silica TV screen glassmelts containing ZnO. Sodium antimonate $(Na_2OSb_2O_5)$ was used as a fining agent. Viscosity and surface tension of the melts were determined. On the basis of these properties, fining tests for several batches were performed by "MF" (Melting and Fining) and "PMF" (Profiled melting and Fining) methods. The results of these tests showed an opposite behavior each other with increase in ZnO content. This hehavior has been discussed in terms of two fining processes-growth of bubbles and shrinkage of seeds. shrinkage of seeds.

  • PDF