• Title/Summary/Keyword: brushless

Search Result 766, Processing Time 0.043 seconds

Brushless소형단상 직류전동기의 개발현황

  • 박창순
    • 전기의세계
    • /
    • v.40 no.6
    • /
    • pp.45-49
    • /
    • 1991
  • 단상 brushless 전동기는 상기 문제점 때문에 사용이 불가능하였으나 고성능 영구자석과 제어소자의 발달로 제작이 간단하고 제어소자의 수가 다상 brushless 전동기에 비하여 적기 때문에 가격이 싼 brushless 단상 직류 전동기의 연구가 활발하므로 이 전동기의 원리와 문제점을 소개하고자 한다.

  • PDF

Design of AFPM brushless DC Motor (AFPM brushless 직류전동기 설계)

  • Kong, Jeong-Sik;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.9-11
    • /
    • 1996
  • This paper is dealing with the slotless AFPM(Axial Flux Permanent Magnet) Brushless Motor. It has been reported that AFPM brushless DC motor have high efficiency and high energy density than radial flux permanent brushless DC motor. AFPM brushless DC motor finds its application of electric vehicles. In this paper, small AFPM brushless DC motor was designed using the ferrite permanent magnet. For this design, magnet of rotor, stator dimension and stator winding parameters has been studied and prototype AFPM motor has been assembled and motor speed, torque and efficiency are investigated.

  • PDF

Simulation model of 7 Phase Brushless AC Motor Using Mixed Modeling Technique Based on Circuit and Equations (회로 및 수식 기반의 혼합 모델링 기법을 이용한 7상 영구자석 브러시리스 교류전동기의 시뮬레이션 모델)

  • Mok, Hyung-Soo;Kim, Sang-Hoon
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.149-155
    • /
    • 2007
  • The counter emf(electromotive forces) of a permanent magnet multi-phase brushless motor is generally a non-sinusoidal wave or a non-ideal trapezoid. So, conventional modeling using a sinusoidal wave or an ideal trapezoid counter emf can result in errors. In order to reduce modeling errors for simulation and analysis the properties of a multi-phase brushless AC motor, this paper proposes a phase variable model that is a mixed modeling technique using both Finite Element Analysis(FEA) based circuits and motor voltage equations. The phase model parameters including the counter emf voltage waveform are obtained by using of FEA, and the mixed modeling technique based on circuits and equations is used to implement a simulation model for multi-phase brushless AC motors with any counter emf voltage waveforms. Adequacy of the proposed model is established from the simulation and experimental results for a seven-phase brushless motor.

  • PDF

Acoustic Noise and Vibration Reduction of Coreless Brushless DC Motors with an Air Dynamic Bearing

  • Yang, lee-Woo;Kim, Young-Seok;Kim, Sang-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.255-265
    • /
    • 2009
  • This paper presents the acoustic noise and mechanical vibration reduction of a coreless brushless DC motor with an air dynamic bearing used in a digital lightening processor. The coreless brushless DC motor does not have a stator yoke or stator slot to remove the unbalanced force caused by the interaction between the stator yoke and the rotor magnet. An unbalanced force makes slotless brushless DC motors vibrate and mechanically noisy, and the attractive force between the magnet and the stator yoke increases power consumption. Also, when a coreless brushless DC motor is driven by a $120^{\circ}$ conduction type inverter, high frequency acoustic noise occurs because of the peak components of the phase currents caused by small phase inductance and large phase resistance. In this paper, a core-less brushless DC motor with an air dynamic bearing to remove mechanical vibration and to reduce power consumption is applied to a digital lightening processor. A $180^{\circ}$ conduction type inverter drives it to reduce high frequency acoustic noise. The applied methods are simulated and tested using a manufactured prototype motor with an air dynamic bearing. The experimental results show that a coreless brushless DC motor has characteristics of low power consumption, low mechanical vibration, and low high frequency acoustic noise.

A study on the Development of Sensorless Driver for Electric Compressor Brushless DC Motor (전동식 컴프레서 브러시리스 직류 전동기용 센서리스 드라이브 개발에 관한 연구)

  • Cho, Jung-Hun;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.374-375
    • /
    • 2019
  • In this paper, In the whole industry, there is a tendency to replace brushless motors with brushless motors because of the high rate of failure in DC motors with brushes. Accordingly, many methods for driving a brushless motor have been developed and studied. In order to drive the brushless motor, it is essential to know the information about the rotor position of the motor. However, it is not possible to use a position sensor for rotor disconnection due to the structure of an electric compressor brushless DC motor. In this paper, we investigate the rotor position of the motor by using the counter electromotive force included in the voltage of the terminal made by Y connection by using the resistance of each phase without using Hall sensor or encoder generally used to detect the rotor position. A sensorless drive system for a square wave brushless direct current (DC) motor is proposed. To do this, we propose a method to detect the rotor position from the analyzed terminal voltage waveform by performing terminal voltage analysis of each phase for 3-phase, 2-exciton unipolar PWM.

  • PDF

A Study on the Current Control Method for Torque Ripple Reduction of Brushless DC Motor (브러시리스 직류 전동기의 토크 맥동 저감을 위한 전류 제어 방식에 관한 연구)

  • 이광운;홍희정;박정배;여형기;유지윤
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.342-346
    • /
    • 1998
  • The brushless DC motor with trapezoidal back emfs has torque ripple due to phase commutation. The torque ripple generates noise and vibration and cause errors in position control so this makes the brushless DC motor less suitable for high performance servo applications. In this paper, we propose a new current control method to reduce the torque ripple due to commutation, when the unipolar PWM method is applied for the phase current control of brushless DC motor.

  • PDF

Design of Brushless Synchronous Motor with an Inverter Integrated Rotor (회전자 인버터 내장형 Brushless 동기 전동기 설계)

  • Do, Sang-Hwa;Lee, Byung-Hwa;Chae, Seung-Hee;Hong, Jung-Pyo;Jung, Eun-Soo;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.939-940
    • /
    • 2011
  • This paper deals with the design of a brushless synchronous motor with an inverter integrated rotor instead of a brush and a slip ring. It is designed for 80kW output power and compared with an induction motor and a permanent magnet synchronous motor of the same specifications. Brushless synchronous motor, induction motor and permanent magnet synchronous motor have the same amount of magnet flux density at an air gap. As a result, the brushless synchronous motor can be reduced volume of motor and power losses comparing to the induction motor.

  • PDF

Torque-speed Characteristic Analysis of Brushless Motor according to the change of Inductance in rotor position (변위에 따른 인덕턴스 변화를 고려한 브러시리스 전동기의 토크-속도 특성 해석)

  • Lee, Jea-Keon;Lee, Jung-Jong;Kwon, Soon-O;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.844_845
    • /
    • 2009
  • Inductance and back EMF are important parameters in characteristic analysis of brushless motor. Inductance is constant value in surface permanent magnet type brushless motor. But it is change depending on the position of the rotor in interior permanent magnet type brushless motor. So this paper is considering for change inductance in characteristic analysis of brushless motor. Characteristic analysis is executed by the method that three-phase bipolar 120 degree commutation drive type.

  • PDF

A Novel Instantaneous Torque Control Scheme of Brushless Permanent Magnet Motor (브러시리스 영구자석 전동기의 새로운 순시토오크 제어 방법)

  • 최근국;박한웅;박성준;원태현;송달섭;이만형
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.862-867
    • /
    • 1999
  • In general, the realization of high performance brushless permanent magnet motors which are widely used in servo drive is focused on the linear control for ripple-free torque. This is also the main problem that should be solved in all AC motors including induction motor to achieve high performance control, and recent papers deal with this problem. In this paper, the novel optimal excitation scheme of brushless permanent magnet motor producing loss-minimized ripple-free torque based on the d-q-0 reference frame is presented including 3 phase unbalanced condition. The optimized phase current waveforms that are obtained by the proposed method can be a reference values and the motor winding currents are forced to track it by delta modulation technique. As a results, it can be shown that the proposed work can minimize the torque ripple by the optimal excitation current for brushless permanent magnet motor with any arbitrary phase back EMF waveform. Simulation and experimental results prove the validity and practical applications of the proposed control scheme.

  • PDF