• 제목/요약/키워드: browsing patterns

검색결과 17건 처리시간 0.021초

대학 홈페이지 활용도 향상을 위한 웹 로그 프로세스마이닝 분석 (Web-log Process Mining Analysis for Improving Utilization of University Homepage)

  • 이용욱;최상현
    • Journal of Information Technology Applications and Management
    • /
    • 제21권4호
    • /
    • pp.51-64
    • /
    • 2014
  • The purpose of operating the main homepage of University is to provide the related information about University resources to site visitors. In this study, we analyze website browsing patterns and extract characteristics of users in order to improve its utilization. The access log files to main homepage were used to analyze the browsing patterns and converted to process log files adaptable to a process mining tool, ProM. Finally we provide useful information about user friendly homepage design and suggest plans for improving its utilization to website operators.

기자직의 웹 정보탐색행위 패턴 분석 (Analyzing Patterns in News Reporters' Information Seeking Behavior on the Web)

  • 권혜진;정동열
    • 정보관리학회지
    • /
    • 제27권4호
    • /
    • pp.109-130
    • /
    • 2010
  • 본 연구의 목적은 기자직의 웹 행동 분석을 통해 웹 정보탐색행위 패턴의 특성을 규명하는 것이다. 이를 위해 본 연구는 기자직 23명을 대상으로 트랜잭션로그를 수집하여 분석하였다. 데이터 수집을 위하여 분석 대상의 컴퓨터에 웹 트래킹 소프트웨어를 설치하였으며, 2주 동안 총 39,860개의 웹 로그가 수집되었다. 세션의 시작과 종료 패턴, 단계별 이행 패턴, 순차규칙 모형이 분석되었으며, 기자직과 일반인의 웹 이용 패턴을 비교하였다. 이를 토대로 기자직의 웹 정보탐색행위 패턴을 사실확인형 탐색, 사실확인형 검색, 조사형 탐색, 조사형 검색 등 4가지 형태로 유형화하였다.

Analysis of Library Website Users' Behavior to Optimize Virtual Information and Library Services

  • Shevchenko, Lyudmila
    • Journal of Information Science Theory and Practice
    • /
    • 제8권1호
    • /
    • pp.45-55
    • /
    • 2020
  • The purpose of this work was to study library website users' actions by tracking their behavior, determining popular content, and identifying browsing patterns and subsequent improvement of access to popular content. The study of behavior models and the use of web analytics has led to the emergence of solutions that improve the usability and functionality of the State Public Scientific-Technological Library of the Siberian Branch of the Russian Academy of Sciences (SPSTL SB RAS) website. These are: identifying user tasks as they are developed, conducting user testing to better understand the event. tracking data and collecting additional data to verify the effectiveness of the changes made. Examining data on the duration of the session and the number of visits will help determine the goals of user visits and develop new recommendations. Usability analysis and testing will make it possible to compare the data obtained using web analytics and the perception of the library site by the users themselves. Recommendations are offered to libraries on the use of data on the real behavior of the target audience of the library website to improve access to library resources and services, increase their relevance and improve information services.

Personalized Battery Lifetime Prediction for Mobile Devices based on Usage Patterns

  • Kang, Joon-Myung;Seo, Sin-Seok;Hong, James Won-Ki
    • Journal of Computing Science and Engineering
    • /
    • 제5권4호
    • /
    • pp.338-345
    • /
    • 2011
  • Nowadays mobile devices are used for various applications such as making voice/video calls, browsing the Internet, listening to music etc. The average battery consumption of each of these activities and the length of time a user spends on each one determines the battery lifetime of a mobile device. Previous methods have provided predictions of battery lifetime using a static battery consumption rate that does not consider user characteristics. This paper proposes an approach to predict a mobile device's available battery lifetime based on usage patterns. Because every user has a different pattern of voice calls, data communication, and video call usage, we can use such usage patterns for personalized prediction of battery lifetime. Firstly, we define one or more states that affect battery consumption. Then, we record time-series log data related to battery consumption and the use time of each state. We calculate the average battery consumption rate for each state and determine the usage pattern based on the time-series data. Finally, we predict the available battery time based on the average battery consumption rate for each state and the usage pattern. We also present the experimental trials used to validate our approach in the real world.

제품 비교 웹서비스의 고객 검색 패턴에 대한 연구 (Human Search Patterns on Product Comparison Service)

  • 이홍희;이충권;유상진
    • 한국산업정보학회논문지
    • /
    • 제14권3호
    • /
    • pp.98-105
    • /
    • 2009
  • 기업이 매출을 신장하고 자신의 웹싸이트에 접속하는 고객들의 재방문 횟수를 늘리기 위하여, 고객이 원하는 제품정보를 효과적으로 전달해야 하는 필요성이 대두되고 있다. 그러므로, 웹싸이트상의 올바른 제품정보 배치에 대한 중요성은 강조되어야 한다. 이 논문에서는, 제품 비교 서비스에서 정보 배치의 형태에 따라 고객의 정보검색 패턴이 어떻게 바뀌는지를 연구하였다. 분석결과로 제품 비교 웹서비스의 수직적 배치 형태에서는 사람들은 특성 정보 경로를 따르는 경향을 보였으며, 수평적 배치 형태에서는 제품 정보 경로를 따르는 경향을 보였다.

Two Machine Learning Models for Mobile Phone Battery Discharge Rate Prediction Based on Usage Patterns

  • Chantrapornchai, Chantana;Nusawat, Paingruthai
    • Journal of Information Processing Systems
    • /
    • 제12권3호
    • /
    • pp.436-454
    • /
    • 2016
  • This research presents the battery discharge rate models for the energy consumption of mobile phone batteries based on machine learning by taking into account three usage patterns of the phone: the standby state, video playing, and web browsing. We present the experimental design methodology for collecting data, preprocessing, model construction, and parameter selections. The data is collected based on the HTC One X hardware platform. We considered various setting factors, such as Bluetooth, brightness, 3G, GPS, Wi-Fi, and Sync. The battery levels for each possible state vector were measured, and then we constructed the battery prediction model using different regression functions based on the collected data. The accuracy of the constructed models using the multi-layer perceptron (MLP) and the support vector machine (SVM) were compared using varying kernel functions. Various parameters for MLP and SVM were considered. The measurement of prediction efficiency was done by the mean absolute error (MAE) and the root mean squared error (RMSE). The experiments showed that the MLP with linear regression performs well overall, while the SVM with the polynomial kernel function based on the linear regression gives a low MAE and RMSE. As a result, we were able to demonstrate how to apply the derived model to predict the remaining battery charge.

웹 브라우징 패턴기반의 DDoS 공격탐지 (DDoS attack Detection based on Web Browsing Patterns)

  • 유성민;정우탁;정광운;박평구;류재철
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(C)
    • /
    • pp.283-285
    • /
    • 2012
  • 2009년 7.7 DDoS 공격을 기점으로 DDOS 공격에 HTTP-GET 프로토콜이 공격에 주로 사용되고 있다. 본 논문에서는 클라이언트에서 개인사용자의 웹 브라우징 패턴을 분석함으로써 HTTP-GET 공격을 탐지하는 방법을 제안한다. 웹 브라우징 패턴 분석에는 Markov Model을 사용하여 사용자의 정상적인 행동패턴을 계산하고, 공격을 탐지하는데 사용한다. 제안한 방법은 클라이언트에서 개인사용자에 대한 개별적인 웹 브라우징 패턴을 분석하기 때문에 서버에서보다 계산량이 적으며, 클라이언트 레벨에서 DDoS 공격을 조기에 탐지/차단함으로써 서버에서의 DDoS 공격 탐지에 의한 부하를 줄일 수 있다.

리눅스 커널 블록 I/O 패턴 Profiling 기법을 이용한 안드로이드 장치의 Browser I/O 패턴 분석과 개선 방안 (Browser I/O Patterns of Android Devices Analysis and Improvement Using Linux Kernel Block I/O Profiling Techniques)

  • 장보길;이성우;임승호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 추계학술발표대회
    • /
    • pp.30-32
    • /
    • 2011
  • 현재 컴퓨터 시스템에서 대표적인 성능 저하가 발생되는 부분은 블록 I/O 시스템이다. 안드로이드와 같은 모바일 장치 또한 위와 같은 성능 이슈를 가지고 있다. 본 논문에서는 리눅스 블록 레이어의 I/O를 tracing 해주는 blktrace를 안드로이드 장치에 적용하여 SQLite를 사용하는 Web Browsing 시의 I/O 패턴 분석과 성능 개선 방안을 제시 한다.

도서관 공간 활용의 효율성 제고를 위한 이용패턴분석에 관한 연구 (Analysis of Library Space Use Patterns to Determine its Optimum Utilization)

  • 박성재
    • 정보관리학회지
    • /
    • 제33권1호
    • /
    • pp.225-245
    • /
    • 2016
  • 본 연구의 목적은 대학도서관 이용자의 도서관 이용행태를 분석하여 대학도서관 공간 활용의 효율성을 제고하는 데 있다. 도서관 이용행태를 분석하기 위해 본 연구는 이용자들이 직접 자신들의 행동을 기록하는 다이어리 기법을 이용했다. 총 108명이 참여를 했고 이들 중 84명이 다이어리를 작성했다. 제출된 다이어리 중 내용을 충실히 작성한 14명의 참여자와 도서관 이용행태, 이용시 문제점 및 요구사항 등에 대한 인터뷰를 진행했다. 다이어리와 인터뷰 분석결과, 공간계획 측면에서 이용되지 않은 공간이나 기기들의 이용률 향상을 위한 방안마련과 서가 브라우징을 통한 정보접근 향상을 위한 방법을 제안했다. 또한 도서관 이용시간 분석을 통해 학생들의 이용행태 및 이용률 제고 방안을 논의했다.

연관 웹 문서 분류와 사용자 브라우징 패턴을 이용한 동적 링킹 시스템 (Dynamic Linking System Using Related Web Documents Classification and Users' Browsing Patterns)

  • 박영규;김진수;김태용;이정현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 추계학술발표논문집 (상)
    • /
    • pp.305-308
    • /
    • 2000
  • 웹사이트 설계자의 주관적 판단에 의한 정적 하이퍼텍스트 링킹은 모든 사용자들에게 동일한 링크를 제공한다는 단점을 가지고 있다. 이러한 문제점을 개선하고, 각 사용자들의 브라우징 패턴에 적합한 웹 문서들을 동적 링크로 제공해주기 위한 여러 동적 링킹 시스템들이 제안되었다. 그러나 대부분의 동적 링킹 시스템들은 사용자의 현재 브라우징 패턴과 가장 유사한 패턴 정보만을 이용해 동적 링크를 제공하기 때문에 연관성이 없는 웹 문서들에 대한 링크를 수시로 제공한다는 또 다른 문제를 지니고 있다. 본 논문에서는 데이터 마이닝의 한 응용 분야인 웹 마이닝 기법을 이용하여 웹 서버의 로그파일로부터 사용자들의 브라우징 패턴을 분석해내고, 다차원 데이터 집합에 적합한 Association Rule Hypergraph Partitioning(ARHP) 알고리즘을 이용하여 서로 연관성이 있는 웹 문서들을 분류한다. 사용자 브라우징 패턴 정보로부터 사용자에게 추천해줄 1차 링크 집합을 생성하고, 연관 웹 문서 정보를 이용하여 2차 링크 집합을 생성한다. 그리고 두 링크 집합에 공통으로 포함된 링크 집합만을 사용자에게 동적으로 추천해줌으로써 사용자가 보다 편리하고 정확하게 웹사이트를 브라우징 할 수 있도록 하는 동적 링킹 시스템을 제안한다.

  • PDF