• Title/Summary/Keyword: brown-rot fungus

Search Result 124, Processing Time 0.025 seconds

Leaf Blight of Sweet Persimmon Tree in the Field and Fruit Rot in the Storage Caused by Pestalotia diospyri (Pestalotia diospyri에 의한 생육중의 단감 잎마름병과 저장중 과일 부패병)

  • Kwon, Jin-Hyeuk;Ahn, Gwang-Hwan;Park, Chang-Seuk
    • The Korean Journal of Mycology
    • /
    • v.32 no.2
    • /
    • pp.130-133
    • /
    • 2004
  • Leaf blight and fruit rot of sweet persimmon (cv. Fuyu) caused by Pestalotia diospyri were observed during the growing season and postharvest such as storage and transport, respectively. Typical symptoms on leaves developed with small brown spots and were later reddish brown colors. In the storage fruit, the white mycelial mats formed between fruit and calyx. The pathogenic fungus was isolated from infected fruits and cultured on potato dextrose agar (PDA). Colony color of the fungus was white at first on PDA. Conidia were ovoid or fusiform, 5 cells, middle 3 cells were olive, upper and lower 2 cells were colorless, and their size were $16{\sim}22\;{\times}\;6{\sim}8\;{\mu}m$. They had were $2{\sim}3$ appendage at basal cell and size $9{\sim}18\;{\mu}m$. Based on the cultural and mycological characteristics and pathogenicity test on host plants and fruits, the fungus was identified as Pestalotia diospyri Syd.&P. Syd. This is the first report on the leaf blight and fruit rot of sweet persimmon caused by Pestalotia diospyri in Korea.

Stem Rot of Hosta longipes Caused by Sclerotium rolfsii in Korea (Sclerotium rolfsii에 의한 비비추 흰비단병)

  • Kwon Jin-Hyeuk;Park Chang-Seuk
    • Research in Plant Disease
    • /
    • v.11 no.2
    • /
    • pp.201-203
    • /
    • 2005
  • The stem rot disease was found on Hosta longipes that planted in the flower beds along the Namgang riverside in Jinju city, Korea. The disease occurred first time in July, 2004 and sporadically occurred in 2005. The typical symptom of the disease is water-soaking, dark brown spot on the stem, and getting wilt. The infected plants were mostly died. White mycelial mats were spread over lesions and sclerotia were formed on stems and near soil line. The sclerotia were globoid in shape, $1\~3$ mm in diameter and white to brown in color, The optimum temperature for mycelial growth of the fungus on PDA was $30^{\circ}C$ and the hyphal width was $4\~8{\mu}m$. Clamp connections were observed in the hyphae of the fungus grown on PDA. Pathogenicity of the causal organism was proved on Hosta longipes according to Koch,s postulate. On the basis of mycological characteristics and pathogenicity to host plants, the fungus was identified as Sclerotium rolfsii Saccardo. This is the first report on the stem rot of H. longipes caused by S. rolfsii in Korea.

Occurrence of Phytophthora Rot of Strawberry Caused by Phytophthora nicotianae var. nicotianae (Phytophthora nicotianae var. nocotianae에 의한 딸기 역병의 발생)

  • 송주희;노성환;하주희;정연화;문병주
    • Korean Journal Plant Pathology
    • /
    • v.14 no.5
    • /
    • pp.445-451
    • /
    • 1998
  • A severe Phytophthora rot of strawberry caused by a species of Phytophthora has been widely occurred at major cultivation areas of Kimhae on August in 1997. Incidence of the disease was obtained in the range of 69.2~83.6% in surveyed 4 fields and showed an average of 75.2%. A species of Phytophthora was mostly isolated from the crown of infected strawberry plants and all the isolates were identified as P. nicotianae var. nicotianae (=P. parasitica). The fungus showed strong pathogenicity on strawberry by inoculation test. As a result of the leaf inoculation using mycelial disks of the fungus, both leaves and petioles were darkly browned, and were finally blighted. As a result of the root inoculation of zoospore suspension, both roots and crowns were rotten with dark brown. Although the fungus produced sporangia either on V-8 juice agar medium or liquid medium, the sporangia observed on the liquid medium appeared to be broadly turbinate and noncaducous. Moreover the fungus cultured on the liquid medium often produced sporangia having two papilla. The number of zoospores in sporangia was found to be ranged from 3 or 4 to as many as 20 or 25. In addition, the released zoospore from the sporangium became the cystospore during the prolonged culture of the fungus. The sporangia were measured as av. 49$\times$35 ${\mu}{\textrm}{m}$ with l/b ratio of 1.43. All isolates from crowns were heterothallic and A1 mating type since oospores were abundantly formed on clarified V-8 juice agar by dual culture with P. capsici A2 mating type. Aplerotic oospores were sized 24-26 ${\mu}{\textrm}{m}$. Antheridia were always amphigynous and recoreded an average of 12$\times$10 ${\mu}{\textrm}{m}$. Hyphal swlling were easily observed, and terminal or intercalary chlamydospores were abundantly formed on V-8 juice agar as well as in C/Z solution and sized av. 28.2 ${\mu}{\textrm}{m}$. This is the first report of Phytophthora rot of strawberry in Korea.

  • PDF

Phytophthora Rot on Sword Bean Caused by Phytophthora nicotianae

  • Jee, Hyeong-Jin;Shen, Shun-Shan;Park, Chang-Seuk;Kwon, Jin-Hyeuk
    • The Plant Pathology Journal
    • /
    • v.20 no.4
    • /
    • pp.235-239
    • /
    • 2004
  • Phytophthora rot on sword bean, Canavalia gladiata, which has not been reported yet in Korea, occurred in some fields of Jinju in 2003. The disease develops on the basal stem of the plant, but is also often observed on leaves and pods. Rot lesions begin with small dark brown spots and as these are water-soaked, they enlarge rapidly. The magnitude of at the field reached 40%. Abundant sporangia of Phytophthora were formed on the surface of diseased pods and were mummied later. The causal fungus was identified as P. nicotianae with the following mycological characteristics: Sporangium-readily formed in water, papillate, noncaducous, ovoid to spherical, 24-58 (L) ${\times}$ 22-35 (W) in size; Oogonium-spherical, smooth walled, and 22-30; Oospore- aplerotic, spherical, and 18-24; Antheridium- amphigynous, unicellula, and spherical; Chlamydospore- abundant, spherical, and 25-35; Sexuality- heterothallic, and A1 or A2; Optimum growth temperature- about 28$^{\circ}C.$ The fungus showed strong pathogenicity to sword bean. Symptoms similar to those observed in the fields appeared 2 days and 4 days after inoculation with and without wound on pods. This is the first report of Phytophthora rot of sword bean in Korea.

Stem Rot of Eggplant (Solanum melongena) Caused by Sclerotium rolfsii (Sclerotium rolfsii에 의한 가지 흰비단병)

  • Kwon, Jin-Hyeuk;Shin, Shun-Shan;Park, Chang-Seuk
    • The Korean Journal of Mycology
    • /
    • v.31 no.2
    • /
    • pp.117-119
    • /
    • 2003
  • A stem rot of eggplant (Solanum melongena) was found in experimental field of Gyeongsangnam-do Agricultural Research and Extension Services, Korea. The typical symptoms of the disease were stem rot, crown rot, wilt or blight. Upper parts of the infected stems were mostly blighted and white turf of fungal mycelium mats was spread over lesions. Sclerotia were farmed on the stems near soil line. The sclerotia of the fungus eadily were produced in artificial media such as PDA at $30^{\circ}C$. The sclerotia were globoid, $1.0{\sim}3.4mm$ in diameter and brown in color. The optimum temperature for growth of the fungus was about $30^{\circ}C$. The typical clamp connections were found in the hypha formed on PDA, and was $3.8{\sim}10.6{\mu}m$ in size. On the basis of mycological characteristics and pathogenecity test, the fungus was identified as Sclerotium rolfsii. This is the first report of stem rot of eggplant caused by Sclerotium rolfsii in Korea.

Occurrence of Stem Rot of Astragalus sinicus Caused by Sclerotium rolfsii in Korea (Sclerotium rolfsii에 의한 자운영 흰비단병의 발생)

  • Kwon, Jin-Hyeuk;Lee, Heung-Su;Kim, Tae-Sung;Song, Won-Doo;Cho, Hyeoun-Suk
    • The Korean Journal of Mycology
    • /
    • v.37 no.2
    • /
    • pp.198-200
    • /
    • 2009
  • From 2008 to 2009, the stem rot of Astragalus sinicus L. caused by Sclerotium rolfsii occurred sporadically in Gyeongnam area, Korea. The typical symptom is water-soaking, rotting and wilting on the stem. The infected plants were eventually died. White mycelial mats were spread over lesions, and then sclerotia were formed on stems and near soil line. The sclerotia were globoid in shape, white to brown in color, 1-3 mm in size and the hyphal width was 3-9 μm. The optimum temperature for mycelial growth and sclerotial formation on PDA was 30oC. The typical clamp connections were observed in the hyphae of the fungus grown on PDA. On the basis of mycological characteristics and pathogenicity to host plants, this fungus was identified as Sclerotium rolfsii Saccardo. This is the first report on the stem rot of A. sinicus caused by S. rolfsii in Korea.

Responses of Peach Blossom Blight and Brown Rot Fungus Monilinia fructicola to Benzimidazole and Diethofencarb in Korea

  • Lim, Tae-Heon;Kim, Jin-Ho;Cha, Byeong-Jin
    • The Plant Pathology Journal
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • The population shifts of Monilinia fructicola isolates which were resistant to the fungicide benzimidazoles were investigated in four regions of Korea from 1998 to 2000. The isolation frequency of benzimidazole-resistant isolates ranged from 18.8% to 29.6% in Chongdo and from $22.0\%$ to $26.8\%$ in Gyeongsan during the same period. However, the frequency of benzimidazoleresistant isolates was less than $4.0\%$ in Chochiwon and Youngduk during the same period. Benzimidazoleresistant isolates showed cross-resistance among benzimidazoles. On the other hand, none of the isolates showed cross-resistance to diethofencarb and carbendazim. Regardless of the year, the benzimidazole-resistant isolates of $EC_{50}$ higher than 500 $\mug%$ a.i./ml were isolated more frequently in mid and late season than in early season. In an orchard of Gyeongsan that had not been exposed to any fungicides for several years, the population of benzimidazole-resistant isolate had persisted without much fluctuation for three years. These results suggest that benzimidazole resistance of M. fructicola is becoming a problem in controlling brown rot and blossom blight of peach in regions like Chongdo and Gyeongsan.

Bipolaris Stem Rot of Cactus Caused by Bipolaris cactivora (Petrak) Alcorn (Bipolaris cactivora(Petrak) Alcorn에 의한 접목선인장 줄기썩음병)

  • Chang, Mee;Hyun, Ik-Hwa;Lee, Young-Hee
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.661-663
    • /
    • 1998
  • Bipolaris stem rot of cactus severely occurred up to 77% at the field of Koyang and Kimcheon from 1996 to 1997. The symptom was initially light yellow, water soaked round lesion, subsequently turned light brown and dried to death. The causal fungus was identified as Bipolaris cactivora (Petrak) Alcorn. Conidia were obclavate to fusoid, rounded ends, light brown color, 1~4 septate, and conidial size was 23~42$\times$6~9 ${\mu}{\textrm}{m}$ (av. 32.5$\times$7.5 ${\mu}{\textrm}{m}$). Conidiophores were caespitose, straight, pale to golden brown and 67~280 ${\mu}{\textrm}{m}$ in length. When healthy cacti were inoculated with the isolates obtained form the lesion of diseased plants, the same characteristic symptoms as those in the field were produced. The symptom of four-month-old cactus was developed more rapidly than that of six-month-old cactus. The pathogen was reisolated from the artificially inoculated lesions.

  • PDF

Distribution of Monilinia fructicola Isolates Resistant to Dicarboximide or to both Procymidone and Carbendazim in Korea

  • Cha, Byeong-Jin;Lim, Tae-Heon
    • The Plant Pathology Journal
    • /
    • v.19 no.1
    • /
    • pp.46-50
    • /
    • 2003
  • To evaluate the sensitivity of Monilinia fructicola to dicarboximides used in controlling brown rot of peach, the fungus was isolated from commercial peach orchards in Chochiwon (CH), Chongdo (CD), Gyeongsan (GY), and Youngduk (YO) in Korea. The population shift of dicarboximide-resistant isolates of M. fructicola was investigated for 3 years starting 1998. The frequency of procymidone-resistant isolates (PRI) was higher in CD and GY than in CH and YO. The frequency of PRI was higher in the mid season (July-August) than in the rest of the year. Cross-resistance rate of PRI to iprodione was over 87.8% during the investigation, and double-resistance to both procymidone and carbendazim was less than 10%. However, the rate of cross-resistant isolates to vinclozolin was low. In the orchards in GY and CH without any fungicide spray, the PRI population was persistent and did not vary for 3 years. The results suggest that dicarboximide resistance of M. fructicola could be a problem in controlling brown rot and blossom blight on peach trees because it may take a long time to recover the population with sensitive isolates even in the absence of these fungicides.

Analysis of Expressed Sequence Tags from the Wood-Decaying Fungus Fomitopsis palustris and Identification of Potential Genes Involved in the Decay Process

  • Karim, Nurul;Shibuya, Hajime;Kikuchi, Taisei
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.347-358
    • /
    • 2011
  • Fomitopsis palustris, a brown-rot basidiomycete, causes the most destructive type of decay in wooden structures. In spite of its great economic importance, very little information is available at the molecular level regarding its complex decay process. To address this, we generated over 3,000 expressed sequence tags (ESTs) from a cDNA library constructed from F. palustris. Clustering of 3,095 high-quality ESTs resulted in a set of 1,403 putative unigenes comprising 485 contigs and 918 singlets. Homology searches based on BlastX analysis revealed that 78% of the F. palustris unigenes had a significant match to proteins deposited in the nonredundant databases. A subset of F. palustris unigenes showed similarity to the carbohydrateactive enzymes (CAZymes), including a range of glycosyl hydrolase (GH) family proteins. Some of these CAZyme-encoded genes were previously undescribed for F. palustris but predicted to have potential roles in biodegradation of wood. Among them, we identified and characterized a gene (FpCel45A) encoding the GH family 45 endoglucanase. Moreover, we also provided functional classification of 473 (34%) of F. palustris unigenes using the Gene Ontology hierarchy. The annotated EST data sets and related analysis may be useful in providing an initial insight into the genetic background of F. palustris.