• Title/Summary/Keyword: bromine number

Search Result 4, Processing Time 0.021 seconds

Studies on the Cosmetic Analysis based upon Oxidation Reduction Reactions (산화환원 반응을 이용한 화장품 분석에 관한 연구)

  • Kim, Young-So;Kim, Boo-Min;Park, Sang-Chul;Park, Jeong-Eun;Jeong, Hye-Jin;Chang, Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.1 s.60
    • /
    • pp.11-15
    • /
    • 2007
  • Oxidation/reduction titrations are important quantitative procedures for many chemicals. Several widely used analytical methods for cosmetic ingredients are based on the redox reactions. In this article, we summarized basic theories of redox titration and applications. Determination of unsaturation properties based on iodine or bromine number, quantitation of hydrogen peroxide or peroxide materials in several cosmetic ingredients and measurement of titanium dioxide, widely used sunscreen agent, in cosmetics are discussed here.

Quantitative Source Estimation of PM-10 in Seoul Area (서울시 PM-10 오염원의 정량적 기여도 추정)

  • 유정석;김동술;김윤신
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.279-290
    • /
    • 1995
  • Recently in Korea, due to the significant drop of lead and bromine levels as a marker of autoemission source in the urban areas, the conventional application of receptor methods has many difficulties to properly apportion mass contribution of some sources. It is then needed to urgently develop alternative source profiles and identify new emission markers. Thus, the study has extensively examined the results obtained from using PAHs and elemental data for receptor modeling and has provided an opportunity to identify alternative source compositions and to determine a proper number of the ambient emission sources in Seoul area. The purpose of the study is to identify the sources of PM-10 and to estimate their mass contributions in Seoul area. Thus, a receptor model, target transformation factor analysis(TTFA) has been massively applied. The TTFA offers the possibility of determining the number of sources and their mass contributions. The input data used in this study are composed of two separate sets: fine (d$_{p}$ < 2.5.mu.m) and coarse (2.5.mu.m < d$_{p}$ < 10.mu.m) mode aerosol samples. Each sample was simultaneously collected by a PM-10 dichotomous sampler during the daytime(8 AM to 8 PM) and the nighttime(8 PM to 8 AM) from February to October 1993 on the Sungdong-Gu, Seoul. All the samples were analyzed to determine the levels of 10 inorganic elements by an XRF system as well as 14 PAHs by a HPLC. However, only 8 inorganic elements and 7 PAHs were used for the various statistical analysis.sis.

  • PDF

Electrochemical dehalogenation of disinfection by-products and iodine-containing contrast media: A review

  • Korshin, Gregory;Yan, Mingquan
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.345-353
    • /
    • 2018
  • This paper summarizes results of research on the electrochemical (EC) degradation of disinfection by-products (DBPs) and iodine-containing contrast media (ICMs), with the focus on EC reductive dehalogenation. The efficiency of EC dehalogenation of DBPs increases with the number of halogen atoms in an individual DBP species. EC reductive cleavage of bromine from parent DBPs is faster than that of chlorine. EC data and quantum chemical modeling indicate that the EC reduction of iodine-containing DBPs (I-DBPs) is characterized by the formation of active iodine that reacts with the organic substrate. The occurrence of ICMs has attracted attention due to their association with the generation of I-DBPs. Indirect EC oxidation of ICMs using anodes that produce reactive oxygen species can result in a complete degradation of these compounds yet I-DBPs are formed in the process. Reductive EC deiodination of ICMs is rapid and its overall rate is diffusion-controlled yet I-DBPs are also produced in this reaction. Further progress in practically feasible EC methods to remove DBPs, ICMs and other trace-level organic contaminants requires the development of novel electrocatalytic materials, elimination of mass transfer limitations via innovative design of 3D electrodes and EC reactors, and further progress in the understanding of intrinsic mechanisms of EC reactions of DBPs and TrOC at EC interfaces.

Synthesis and Properties of Polydentate Schiff Base Ligands having $N_nO_2$ (n=3~5) Donor Atoms and Bromine Substituent and their Transition Metal Complexes (여러자리 질소-산소계 시프염기 리간드와 전이금속착물의 합성 및 전기화학적 특성)

  • Kim, Sun-Deuk;Shin, Yun-Yeol;Park, Sung-Woo
    • Analytical Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.440-447
    • /
    • 1998
  • Polydentate Schiff base ligands 5-Br-BSDT(bis(5-bromosalicylaldehyde)diethylenetriamine) having $N_3O_2$ atoms, 5-Br-BSTT(bis(5-bromosalicylaldehyde)triethylenetetramine) having $N_3O_2$ atoms, 5-Br-BSTP(bis(5-bromosalicylaldehyde)tetraethylenepentamine) having $N_3O_2$ atoms were synthesized. Stability constants of the complexes between these ligands and the metal ions such as Cu(II), Ni(II) and Zn(II) were measured in DMSO by a polarographic method. It was observed that all metal(II) ions employed in this study formed 1 : 1 complexes with Schiff base ligands. Stability constants for the ligands were in the order of Cu(II)>Ni(II)>Zn(II), and for complex formation were in the order of 5-Br-BSTP>5-Br-BSTT>5-Br-BSDT according to the increasing in the number of donor atoms. Both enthalpy and entropy changes are obtained in negative valves. Exothermicity for the complex formation indicated tight binding between the ligands and metal ions. The negative entropy change would be related to the fact that solvent molecules are strongly interacting with the metal complexes.

  • PDF