• Title/Summary/Keyword: brittle material

Search Result 477, Processing Time 0.03 seconds

Numerical simulation of elastic-plastic stress concentration in fibrous composites

  • Polatov, Askhad M.
    • Coupled systems mechanics
    • /
    • v.2 no.3
    • /
    • pp.271-288
    • /
    • 2013
  • In the present study an elastic-plastic strain analysis is carried out for fibrous composites by using numerical modeling. Application of homogeneous transversely-isotropic model was chosen based on problem solution of a square plate with a circular hole under uniaxial tension. The results obtained in this study correspond to the solution of fiber model trial problem, as well as to analytical solution. Further, numerical algorithm and software has been developed, based on simplified theory of small elastic strains for transversely-isotropic bodies, and FEM. The influence of holes and cracks on stress state of complicated configuration transversely-isotropic bodies has been studied. Strain curves and plasticity zones that are formed in vicinity of the concentrators has been provided. Numerical values of effective mechanical parameters calculated for unidirectional composites at different ratios of fiber volume content and matrix. Content volume proportions of fibers and matrix defined for fibrous composite material that enables to behave as elastic-plastic body or as a brittle material. The influences of the fibrous structure on stress concentration in vicinity of holes on boron/aluminum D16, used as an example.

Temperature-Dependent Thermal and Chemical Stabilities as well as Mechanical Properties of Electrodeposited Nanocrystalline Ni

  • Zheng, Liangfu;Peng, Xiao
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1293-1302
    • /
    • 2018
  • Nanocrystalline (NC) Ni electrodeposits (EDs) with a mean grain size of $34{\pm}12nm$ has been investigated, from room temperature to $800^{\circ}C$ under a purge gas of argon, by both non-isothermal and isothermal differential scanning calorimetry measurements, in combination with characterization of temperature-dependent microstructural evolution. A significant exothermic peak resulting from superimposition of recrystallization and surface oxidation occurs between 340 and $745^{\circ}C$ at a heating rate of $10^{\circ}C/min$ for the NC Ni EDs. The temperatures for recrystallization and oxidation increase with increasing the heating rate. In addition, recrystallization leads to a profound brittle-ductile transition of the Ni EDs in a narrow range around the peak temperature for the recrystallization.

Effect of Machining on Hard Anodizing Surface of Aluminum (절삭가공이 알루미늄 경질 아노다이징 피막에 미치는 영향)

  • Kim, Su-Jin;Mun, Jeongil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.87-92
    • /
    • 2022
  • The Al3003 aluminum plate was cut by grinding, milling, sawing, and shearing, and the hard-anodizing surface of the material was investigated. Large burrs were formed during grinding and milling. The brittle anodized film split and migrated along the deformed aluminum surface. During shearing, the hard-anodized film on the blade entry surface cracks and slides along the deforming aluminum. The cutting heat increased the ductility of the aluminum and further promoted burr formation. The oil-based coolant suppressed burrs and prevented chips from sticking to the endmill. It is better to avoid the high cutting speed and slow material feed rate conditions, which increase the cutting temperature and burr in the band saw.

Behaviour of steel-fibre-reinforced concrete beams under high-rate loading

  • Behinaein, Pegah;Cotsovos, Demetrios M.;Abbas, Ali A.
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.337-353
    • /
    • 2018
  • The present study focuses on examining the structural behaviour of steel-fibre-reinforced concrete (SFRC) beams under high rates of loading largely associated with impact problems. Fibres are added to the concrete mix to enhance ductility and energy absorption, which is important for impact-resistant design. A simple, yet practical non-linear finite-element analysis (NLFEA) model was used in the present study. Experimental static and impact tests were also carried out on beams spanning 1.3 meter with weights dropped from heights of 1.5 m and 2.5 m, respectively. The numerical model realistically describes the fully-brittle tensile behaviour of plain concrete as well as the contribution of steel fibres to the post-cracking response (the latter was allowed for by conveniently adjusting the constitutive relations for plain concrete, mainly in uniaxial tension). Suitable material relations (describing compression, tension and shear) were selected for SFRC and incorporated into ABAQUS software Brittle Cracking concrete model. A more complex model (i.e., the Damaged Plasticity concrete model in ABAQUS) was also considered and it was found that the seemingly simple (but fundamental) Brittle Cracking model yielded reliable results. Published data obtained from drop-weight experimental tests on RC and SFRC beams indicates that there is an increase in the maximum load recorded (compared to the corresponding static one) and a reduction in the portion of the beam span reacting to the impact load. However, there is considerable scatter and the specimens were often tested to complete destruction and thus yielding post-failure characteristics of little design value and making it difficult to pinpoint the actual load-carrying capacity and identify the associated true ultimate limit state (ULS). To address this, dynamic NLFEA was employed and the impact load applied was reduced gradually and applied in pulses to pinpoint the actual failure point. Different case studies were considered covering impact loading responses at both the material and structural levels as well as comparisons between RC and SFRC specimens. Steel fibres were found to increase the load-carrying capacity and deformability by offering better control over the cracking process concrete undergoes and allowing the impact energy to be absorbed more effectively compared to conventional RC members. This is useful for impact-resistant design of SFRC beams.

Determination of K-R Curve for Steel Structure Hot-Rolled Thin Plates (일반구조용강 열간압연 박판에 대한 K-R 곡선 결정)

  • Lee, Eok-Seop;Lee, Gye-Seung;Baek, Jun-Ho;Pyeon, Jang-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.98-105
    • /
    • 2002
  • Some materials exhibit a rising K-R curve, while the K-R curve for other materials is flat. The shape of the K-R curve depends on material behavior and, to a lesser extent, on the configuration of the cracked structure. The K-R curve for an ideally brittle material is flat because the surface energy is an invariant material property. However, the K-R curve can take on a variety of shapes when nonlinear material behavior accompanies fracture. Five different hot-rolled thin plates are tested to investigate K-R curve behavior. A special experimental apparatus is used to prevent specimens from buckling.

Development of Ceramic Roll Materials for Food Grinding Processing and Evaluation of Mechanical Behavior (식품분쇄용 세라믹 롤 재료 개발과 기계적 특성평가)

  • 강위수
    • Journal of Biosystems Engineering
    • /
    • v.26 no.1
    • /
    • pp.47-56
    • /
    • 2001
  • In order to prevent the possibility of mixing of metal powder during food grinding processing with the metal roll mill this study was conducted to develope the materials of ceramics roll as a substitute of gray cast iron mill. Since the ceramics is brittle material and can be broken easily by a crack, it was needed to develope engineering ceramics roll materials with high elastic modulus and fracture toughness. Adding 0∼50 wt% Al$_2$O$_3$as densification additives to porcelain body material and forming the ceramics an different condition, mechanical properties were evaluated. The material structure’s densification process was analyzed by SEM and XRD. The evaluation of the mechanical properties of ceramics roll materials were compared and analyzed by non-destructive test using Young’s modulus and destructive test using 3-point bending strength and fracture toughness. The results showed several correlative results. Porcelain body material with 40 wt% Al$_2$O$_3$content heated at 1,200$\^{C}$ for 5h was high bulk density of 2.77, Young’s modulus of 118.4Gpa, 3-point bending strength of 137 MPa and fracture toughness of 2.88 MPa$.$m$\^$$\sfrac{1}{2}$/ . After analyzing the relationship between non-destructive test and destructive test, the coefficient of determination was more than 0.9. Therefore, the evaluation of non-destructive test by ultrasonic was turned out to be feasible in evaluating the mechanical properties of ceramics.

  • PDF

The Influence of Encapsulation Layer Incorporated into Flexible Substrates for Bending Stress (Flexible 기판의 Bending Stress에 대한 Encapsulation Layer의 영향)

  • Park, Jun-Baek;Seo, Dae-Shik;Lee, Sang-Keuk;Lee, Joon-Ung;Kim, Yong-Hoon;Moon, Dae-Gyu;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.473-476
    • /
    • 2003
  • This paper shows necessity of encapsulation layer to maximite flexibility of brittle indium-tin-oxide (ITO) on polymer substrates. And, Young's modulus (E) of encapsulation layer have an significant effect on external bending stress and the coefficient of thermal expansion (CTE) of that have a significant effect on internal thermal stress. To compare magnitude of total mechanical stress including both bending stress and thermal stress, the mechanical stress of triple-layer structure (substrate / ITO / encapsulation layer or substrate / buffer layer / ITO) can be quantified and numerically analyzed through the farthest cracked island position. As a result, it should be noted that multi-layer structures with more elastic encapsulation material have small mechanical stress compared to that of buffer and encapsulation structure of large Young's modulus material when they were externally bent.

  • PDF

An approach to a novel modelling of structural reinforced glass beams in modern material components

  • Foti, Dora;Carnimeo, Leonarda;Lerna, Michela;Sabba, Maria Francesca
    • Advances in Computational Design
    • /
    • v.7 no.3
    • /
    • pp.173-188
    • /
    • 2022
  • In modern buildings, glass is considered a structurally unsafe material due to its brittleness and unpredictable failure behavior. The possible use of structural glass elements (i.e., floors, beams and columns) is generally prevented by its poor tensile strength and a frequent occurrence of brittle failures. In this study an innovative modelling based on an equivalent thickness concept of laminated glass beam reinforced with FRP (Fiber Reinforced Polymer) composite material and of glass plates punched is presented. In particular, the novel numerical modelling applied to an embedding Carbon FRP-rod in the interlayer of a laminated structural glass beam is considered in order to increase both its failure strength, together with its post-failure strength and ductility. The proposed equivalent modelling of different specimens enables us to carefully evaluate the effects of this reinforcement. Both the responses of the reinforced beam and un-reinforced one are evaluated, and the corresponding results are compared and discussed. A novel equivalent modelling for reinforced glass beams using FRP composites is presented for FEM analyses in modern material components and proved estimations of the expected performance are provided. Moreover, the new suggested numerical analysis is also applied to laminated glass plates with wide holes at both ends for the technological reasons necessary to connect a glass beam to a structure. Obtained results are compared with an integer specimen. Experimental considerations are reported.

Punching shear behavior of recycled aggregate concrete

  • Dan, Saikat;Chaudhary, Manpreet;Barai, Sudhirkumar V.
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.321-333
    • /
    • 2018
  • Flat-slabs, being a significant structural component, not only reduce the dead load of the structure but also reduce the amount of concrete required for construction. Moreover the use of recycled aggregates lowers the impact of large scale construction to nearby ecosystems. Recycled aggregate based concrete being a quasi-brittle material shows enormous cracking during failure. Crack growth in flat-slabs is mostly in sliding mode (Mode II). Therefore sufficient sections need to be provided for resistance against such failure modes. The main objective of the paper is to numerically determine the ultimate load carrying capacity of two self-similar flat-slab specimens and validate the results experimentally for the natural aggregate as well as recycled aggregate based concrete. Punching shear experiments are carried out on circular flat-slab specimen on a rigid circular knife-edge support built out of both normal (NAC) and recycled aggregate concrete (RAC, with full replacement). Uniaxial compression and bending tests have been conducted on cubes, cylinders and prisms using both types of concrete (NAC and RAC) for its material characterization and use in the numerical scheme. The numerical simulations have been conducted in ABAQUS (a known finite element software package). Eight noded solid elements have been used to model the flat slab and material properties have been considered from experimental tests. The inbuilt Concrete Damaged Plasticity model of ABAQUS has been used to monitor crack propagation in the specimen during numerical simulations.

Microstructure and Sintering Behavior of Injection Molded Fe Sintered Body Using Rapid Thermal Heating Process (급속승온공정을 이용한 사출성헝된 Fe 소결체의 미세조직 및 소결거동)

  • Kim Ki-Hyun;Han Jae-Kil;Yu Ji-Hun;Choi Chul-Jin;Lee Byong-Taek
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.528-534
    • /
    • 2004
  • Using the nano Fe powders having 50 nm in diameter, Fe compact bodies were fabricated by injec-tion molding process. The relationship between microstructure and material properties depending on the volume ratio of powder/binder and sintering temperature were characterized by SEM, TEM techniques. In the compact body with the volume percentage ratio of 45(Fe powder) : 55(binder), which was sintered at $700^{\circ}C,$ the relative density was about $97{\%},$ and the values of volume shrinkage and hardness were about $66.3{\%}$ and 242.0 Hv, respec-tively. Using the composition of 50(Fe powder) : 50(binder) and sintered at $700^{\circ}C,$ the values of relative density, volume shrinkage and hardness of Fe sintered bodies were $73.3{\%},\;47.6{\%}$ and 152.8 Hv, respectively. They showed brittle fracture mode due to the porous and fine microstructure.