• 제목/요약/키워드: brittle intergranular fracture

검색결과 19건 처리시간 0.038초

Impact Tensile Properties and Intergranular Fracture Behavior with Strain Rate Variations of Al-M g-X (X = Cr,Si) Alloy

  • Chang-Suk Han;Min-Gyu Chun;Sung-Soon Park;Seung-In Lim
    • 한국재료학회지
    • /
    • 제34권7호
    • /
    • pp.330-340
    • /
    • 2024
  • Al-Mg-Si alloys are light weight and have excellent corrosion resistance, and are attracting attention as a liner material for high-pressure hydrogen containers in hydrogen fuel cell vehicles. Because it has excellent plastic hardening properties, it is also applied to car body panel materials, but it is moderate in strength, so research to improve the strength by adding Si-rich or Cu is in progress. So far, the authors have conducted research on the intergranular fracture of alloys with excessive Si addition from the macroscopic mechanical point of view, such as specimen shape. To evaluate their impact tensile properties, the split-Hopkinson bar impact test was performed using thin plate specimens of coarse and fine grain alloys of Al-Mg-X (X = Cr,Si) alloy. The effect of the shape of the specimen on the characteristics was studied through finite element method (FEM) analysis. As a result, it was found that the intergranular fracture of the alloy with excessive Si depended on the specimen width (W)/grain size (d), which can be expressed by the specimen size and grain size. As W/d decreases, the intergranular fracture transforms into a transgranular fracture. As the strain rate increases, the fracture elongation decreases, and the fracture surface of the intergranular fracture becomes more brittle. It was confirmed that intergranular fracture occurred in the high strain rate region even in materials with small grain sizes.

3.5% NaCl 수용액의 pH변화가 복합조직강의 부식피로파괴에 미치는 영향 (Influence of pH in 3.5% NaCl aqueous solution on corrosion fatigue-fracture of dual phase steel)

  • 오세욱;안호민;도영문
    • 한국해양공학회지
    • /
    • 제1권2호
    • /
    • pp.123-129
    • /
    • 1987
  • Corrosion fatigue fracture of dual phase steel(SS41) and raw material steel(SS41) were investigated in 3.5% NaCl aqueous solution at PH 4,6,9 and 11. The fatigue limit of dual phase steel is increased approximately 1.8 times larger than that of raw material in air. The corrosion fatigue life of dual phase steel is about 5-10 times larger than that of raw material in 3.5% NaCl aqueous solution. The reduction of fatigue life is larger for the acidsalt solution than for the alkali salt solution. The reduction of stress level on the reduction ratio of corrosion fatigue life is large as pH 6-11. The reduction ratio of corrosion fatigue life of dual phase steel and raw material is nearly coincided at pH 2. While at pH4-2 the reduction ratio of corrosion fatigue life only depends on the corrosion effect. It has been found that the corrosion resistance effect of dual phase steel is smaller than that of raw material in corrosion fatigue crack propagation rate. As pH below 6 is changed, it can be clearly observed from raw material that the brittle intergranular fracture is characterized, and from the above result, the influence of corrosion of dual phase steel is small.

  • PDF

오스테나이트계 Fe-18Cr-10Mn-2Ni 합금의 연성-취성 천이 거동에 미치는 침입형 원소의 영향 (Effect of Interstitial Elements on Ductile-Brittle Transition Behavior of Austenitic Fe-18Cr-10Mn-2Ni Alloys)

  • 황병철
    • 한국재료학회지
    • /
    • 제23권11호
    • /
    • pp.649-654
    • /
    • 2013
  • The effect of interstitial elements on the ductile-brittle transition behavior of austenitic Fe-18Cr-10Mn-2Ni alloys with different nitrogen and carbon contents was investigated in this study. All the alloys exhibited ductile-brittle transition behavior because of unusual low-temperature brittle fracture, even though they have a faced-centered cubic structure. With the same interstitial content, the combined addition of nitrogen and carbon, compared to the sole addition of nitrogen, improved the low-temperature toughness and thus decreased the ductile-brittle transition temperature (DBTT) because this combined addition effectively enhances the metallic component of the interatomic bonds and is accompanied by good plasticity and toughness due to the increased free electron concentration. The increase in carbon content or of the carbon-to-nitrogen ratio, however, could increase the DBTT since either of these causes the occurrence of intergranular fracture that lead to the deterioration of the toughness at low temperatures. The secondary ion mass spectroscopy analysis results for the observation of carbon and nitrogen distributions confirms that the carbon and nitrogen atoms were significantly segregated to the austenite grain boundaries and then caused grain boundary embrittlement. In order to successfully develop austenitic Fe-Cr-Mn alloys for low-temperature application, therefore, more systematic study is required to determine the optimum content and ratio of carbon and nitrogen in terms of free electron concentration and grain boundary embrittlement.

질소와 탄소가 복합 첨가된 두 오스테나이트계 Fe-18Cr-10Mn 합금의 연성-취성 천이 거동 (Ductile-to-Brittle Transition Behavior of Two Austenitic Fe-18Cr-10Mn Alloys with the Combined Addition of Nitrogen and Carbon)

  • 이승용;김보영;황병철
    • 열처리공학회지
    • /
    • 제28권1호
    • /
    • pp.1-6
    • /
    • 2015
  • The ductile-to-brittle transition behavior of two austenitic Fe-18Cr-10Mn alloys with the combined addition of nitrogen and carbon was investigated in this study. The alloys exhibited a ductile-to-brittle transition behavior because of unusual brittle fracture at low temperatures unlike conventional austenitic alloys. The alloy with higher carbon content had higher yield and tensile strengths than that with lower carbon content due to the solid solution strengthening effect resulting from carbon addition. However, the increase in carbon content promoted the occurrence of intergranular fracture, and thus deteriorated the impact toughness. In order to develop successfully the austenitic Fe-18Cr-10Mn alloys with the excellent combination of strength and toughness in the future, therefore, more systematic studies are required to find the appropriate amount and ratio of nitrogen and carbon.

Ren$\'{e}$ 95 초내영 합금 분말을 이용한 열간 정수압 성형 및 성형 조건에 따른 미세조직 변화 (HIP Consolidation and Effect of Process Variables on Micristructure for Ren$\'{e}$ 95 Superalloy Powders)

  • 표성규
    • 한국분말재료학회지
    • /
    • 제6권2호
    • /
    • pp.152-162
    • /
    • 1999
  • The present study is concerned with the effect of PM process variables on the microstructure by using atomized superalloy powders. It is suggested that the inhomogeneity of composition is strongly dependent on the process variables. The contents of segregation elements of plasma rotating electrode process (PREP) powders are larger than those of Ar atomization (AA) powders. As HIP treatment temperature in-increases, the secondary phases on the prior particle boundaries (PPB) have continuous,uniform distribution and high density, but the amount of PPB decreases suddenly at 1150$^{\circ}$C. Segregated phases on the PPB are identified to be MC type carbide. Brittle MC type carbides on the PPB provide fracture initiation sites and preferred fracture path, thereby leading to intergranular type brittle fracture.

  • PDF

고온고압용 보일러 튜브의 파손 원인분석 (The Failure Analysis of Boiler Tube for High Temperature and High Pressure Service)

  • 이종훈;유위도
    • 연구논문집
    • /
    • 통권30호
    • /
    • pp.121-128
    • /
    • 2000
  • The failed tube received for this study has been used for approximately 10 year at $330^{\circ}C$ in a steam production boiler tube was fractured in the transversed direction to tube length, and fracture mode was typically intergranulas type without the plastic deformation. The fracture surface was covered by the oxide scale formed from the intermal high pressure steam at high temperature. The microstructure was not nearly thermal-degraded during the service. From this result, we can conclude that the oxide film was proferentialy formed into the grainboundary and this grainboundary oxide film was brittle-fractured by the thermal stress in the longitudinal direction to the tube brittle intergranular fracture mode.

  • PDF

고강도 볼트 카드늄 취성파괴 사례연구 (The Case Study on Cadmium Embrittlement Failure of High Strength Bolt)

  • 윤용인
    • 한국군사과학기술학회지
    • /
    • 제13권5호
    • /
    • pp.769-774
    • /
    • 2010
  • It happened fractures on special bolt which supported main landing gear actuator up-lock rod of aircraft. Cracks were initiated mainly from the center hole and the external thread of the special bolt. To find out failure root causes, metallographic, fractographic analyses as well as test work were carried out. From the fractographic study by SEM work, fracture occurred by a brittle intergranular type failure. The fracture could be occurred primarily by solid-metal-induced embrittlement due to cadmium embrittler penetrated into the flaw existed after machining work for center hole and thread on the bolt during baking treatment processing to eliminate hydrogen. For its successful application, cadmium EP bolts require proper and adequate baking treatment after electroplating, and make no more drilled center hole on the bolt to prevent same failure.

Al-Cu-Mn 주조합금의 SCC 특성에 미치는 Sn 첨가의 영향 (Effect of Sn Addition on the SCC Properties of Al-Cu-Mn Cast Alloy)

  • 김광년;김경현;김인배
    • 한국재료학회지
    • /
    • 제12권6호
    • /
    • pp.436-441
    • /
    • 2002
  • Effect of Sn addition on the stress corrosion cracking(SCC) resistance of the Al-Cu-Mn cast alley was investigated by C-ring teat and electrical conductivity measurement, The electrical conductivity and SCC resistance increased by Sn addition. The alley containing 0,10%Sn showed maximum electrical conductivity and the best SCC resistance. At the same composition, the electrical conductivity and SCC resistance increased from peak aged condition to ever aged condition. The PFZ and coarse precipitates along the grain boundary were observed from TEM micrographs. The fracture mode of the alloy was confirmed as intergranular type and showed brittle fracture surface. The SCC mechanism of the alloy was concluded as the anodic dissolution model, The maximum hardness was increased from 130Hv in the Sn-free alloy to 156Hv in the 0.10%Sn added alloy.

Al-Cu-Mn주조합금의 SCC특성에 미치는 Cd첨가의 영향 (Effect of Cd Addition on the SCC Properties of Al-Cu-Mn Cast Alloys)

  • 이찬희;김경현;김인배
    • 한국재료학회지
    • /
    • 제11권4호
    • /
    • pp.266-271
    • /
    • 2001
  • Al-Cu-Mn 주조합금의 응력부식균열 저항성에 미치는 Cd첨가의 영향을 C-ring test와 전기전도도 시험을 통하여 조사하였다. Cd첨가량이 증가함에 따라 전기전도도가 증가하였고 SCC 저항성도 증가하였다. SCC 시험결과 균열이 입계를 따라 전파되는 입계파괴가 일어났으며, 파면은 취성파괴양상을 나타내었고, 입계를 따라 조대 석출물과 무석출대가 나타난 것으로 보아서 이 합금의 SCC 기구는 anodic dissolution model이라고 판단된다. Cd을 첨가하지 않은 경우 최대경도값은 127Hv였으나, Cd을 첨가한 경우 최대경도값은 138∼146Hv로 증가하였다.

  • PDF

알루미늄 합금의 피로강도향상과 피로특성에 미치는 쇼트피닝 영향 (The Effect of Shot Peening on the Improvement of Fatigue Strength and Characteristics Fatigue Crack of the Aluminum Alloys)

  • 전현배;임만배;박원조
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.256-261
    • /
    • 2007
  • The purpose of this study is to investigate the effect of shot peening on the fatigue strength and fatigue life of two kinds of aluminum alloys. The fatigue strength behavior of aluminum alloys were estimated by the stress ratio and shot velocities. The fatigue life and strength increased with increasing the test shot velocity. However, at the shot velocity range between 50m/s and 70m/s, the compressive residual stress phenomena were observed in test conditions of different shot velocity. The optimal shot velocity is acquired by considering the peak values of the compressive residual stress, dislocations, brittle striation, slip, and fisheye on the fracture surface of test specimen. It was observed from the SEM observation on the deformed specimen that the brittle striation, fisheye were showed in the intergranular fracture structure boundaries at the this velocities. Therefore, fatigue strength and fatigue life would be considered that shot velocity has close relationship with the compressive residual stress.

  • PDF