• Title/Summary/Keyword: brittle fracture

Search Result 665, Processing Time 0.031 seconds

Design for avoid unstable fracture in shipbuilding and offshore plant structure (조선 및 해양플랜트 구조물의 불안전 파괴방지 설계기술)

  • An, Gyubaek;Bae, Hong-Yeol;Noh, Byung-Doo;An, Young-Ho;Choi, Jong-Kyo;Woo, Wanchuck;Park, Jeong-Ung
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.35-40
    • /
    • 2015
  • Recently, there have been the increase of ship size and the development of oil and gas in arctic region. These trends have led to the requirements such as high strength, good toughness at low temperature and good weldability for prevent of brittle fracture at service temperature. There has been the key issue of crack arrestability in large size structure such as container ship. In this report for the first time, crack arrest toughness of thick steel plate welds was evaluated by large scale ESSO test for estimate of brittle crack arrestability in thick steel plate. For large structures using thick steel plates, fracture toughness of welded joint is an important factor to obtain structural integrity. In general, there are two kinds of design concepts based on fracture toughness: crack initiation and crack arrest. So far, when steel structures such as buildings, bridges and ships were manufactured using thick steel plates (max. 80~100mm in thickness), they had to be designed in order to avoid crack initiation, especially in welded joint. However, crack arrest design has been considered as a second line of defense and applied to limited industries like pipelines and nuclear power plants. Although welded joint is the weakest part to brittle fracture, there are few results to investigate crack arrest toughness of welded joint. In this study, brittle crack arrest designs were developed for hatch side coaming of large container ships using arrest weld, hole, and insert technology.

Investigation on Effects of Residual Stresses and Charpy V-Notch Impact Energy on Brittle Fractures of the Butt Weld between Close Check Valve and Piping, and of the Valve Body in Nuclear Power Plants (원전 역지 밸브/배관 맞대기 용접부와 밸브 몸체의 취성 파괴에 미치는 잔류응력 및 Charpy V-노치 충격에너지의 영향 고찰)

  • Kim, Jong-Sung;Kim, Hyun-Su
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.69-73
    • /
    • 2015
  • The study investigated effects of residual stresses and Charpy impact energy on brittle fractures of the butt weld between the valve and the piping, and of the valve body in nuclear power plants via a linear elastic fracture mechanics approach in the ASME B&PV Code, Sec.XI and finite element analysis. Weld residual stress in a butt weld between close check valve and piping, and residual stress in the valve due to casting process were assumed to be proportional to yield strength of base metal. Operating stresses in the butt weld and the valve body were calculated using approximate engineering formulae and finite element analysis, respectively. Applied stress intensity factors were calculated by assuming postulated cracks with specific sizes and then by substituting the residual stresses and the operating stresses into engineering formulae presented in the ASME B&PV Code, Sec.III. Plane strain fracture toughness was derived by using a correlation between Charpy V-notch impact energy and fracture toughness. Structural integrity of the weld and the body against brittle fracture was assessed by using the applied stress intensity factors, plane strain fracture toughness and the linear elastic fracture mechanics approach. As a result, it was identified that the structural integrity was maintained with decreasing the residual stress levels and increasing the Charpy V-notch impact energy.

Crack Analysis of the Quasi-Brittle Materials Using a Stochastic Model (물성의 확륙적 분포를 이용한 Quasi-Brittle 재료의 균열해석)

  • 임윤목;김문겸;신승교;박진완
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.217-222
    • /
    • 1999
  • Usually, the failure of quasi-brittle materials is numerically difficult to describe because of the localization process with softening behavior. In this study, ADLE(Axial Deformation Link Elements) with stochastic material properties are developed to simulate the quasi-brittle material failure behavior. The ADLE method is adopted both Fictitious Crack Model and stochastic method to implement the fracture behavior with the localization behavior of quasi-brittle materials. The main objective of this paper is to show the mash independency and the capability of ADLE for the failure behavior of a quasi-brittle materials.

  • PDF

Dynamic Fracture Toughness of Chevron-notch Ceramic Specimens measured in Split Hopkinson Pressure Bar

  • Lee, Yeon-Soo;Yoon, Young-Ki;Yoon, Hi-Seak
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.69-75
    • /
    • 2002
  • Measuring dynamic fracture toughness of brittle and small ceramic specimen is very difficult in a SHPB (Split Hopkinson Pressure Bar). As a countermeasure to this difficulty, a dynamic fracture toughness measuring method by the Chevron-notch ceramic specimen was proposed. Tested chevron specimens were of Chevron notch angles of 90$^{\circ}$, 100$^{\circ}$ and 110$^{\circ}$. Through finite element analysis, shape parameters of the Chevron-notch specimens according to notch angles were calculated. And the static fracture tough1ess of the Chevron-notch alumina specimen was measured as 3.8MPa√m similar to that of CT specimen with a precrack. Dynamic fracture toughness was 4.5MPa√m slightly higher than the static one. It was shown in this study that the proposed Chevron-notch specimens are valid to measure dynamic fracture toughness of extremely brittle materials such as ceramic.

Statistical Evaluation of Fracture Characteristics of RPV Steels in the Ductile-Brittle Transition Temperature Region

  • Kang, Sung-Sik;Chi, Se-Hwan;Hong, Jun-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.364-376
    • /
    • 1998
  • The statistical analysis method was applied to the evaluation of fracture toughness in the ductile-brittle transition temperature region. Because cleavage fracture in steel is of a statistical nature, fracture toughness data or values show a similar statistical trend. Using the three-parameter Weibull distribution, a fracture toughness vs. temperature curve (K-curve) was directly generated from a set of fracture toughness data at a selected temperature. Charpy V-notch impact energy was also used to obtain the K-curve by a $K_{IC}$ -CVN (Charpy V-notch energy) correlation. Furthermore, this method was applied to evaluate the neutron irradiation embrittlement of reactor pressure vessel (RPV) steel. Most of the fracture toughness data were within the 95% confidence limits. The prediction of a transition temperature shift by statistical analysis was compared with that from the experimental data.

  • PDF

Effect of Grain Size on Ductile-Brittle Transition Behavior of Austenitic Fe-18Cr-10Mn-N-C Alloys (오스테나이트계 Fe-18Cr-10Mn-N-C 합금의 연성-취성 천이 거동에 미치는 결정립 크기의 영향)

  • Lee, Sang-In;Lee, Seung-Yong;Nam, Seung Hoon;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.559-565
    • /
    • 2015
  • The ductile-brittle transition behavior of two austenitic Fe-18Cr-10Mn-N-C alloys with different grain sizes was investigated in this study. The alloys exhibited a ductile-brittle transition behavior because of an unusual brittle fracture at low temperatures unlike conventional austenitic alloys. The alloy specimens with a smaller grain size had a higher yield and tensile strengths than those with a larger grain size due to grain refinement strengthening. However, a decrease in the grain size deteriorated the low-temperature toughness by increasing the ductile-brittle transition temperature because nitrogen or carbon could enhance the effectiveness of the grain boundaries to overcome the thermal energy. It could be explained by the temperature dependence of the yield stress based on low-temperature tensile tests. In order to improve both the strength and toughness of austenitic Fe-Cr-Mn-N-C alloys with different chemical compositions and grain sizes, more systematic studies are required to understand the effect of the grain size on the mechanical properties in relation to the temperature sensitivity of yield and fracture stresses.

A Experimental Study on Strength Safety of Rail Steel using Gas Pressure Welding (레일 가스압접부의 강도 안전성에 관한 실험적 연구)

  • Kim, Kyung-Seob
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.3
    • /
    • pp.266-271
    • /
    • 2012
  • This study was carried out for the purpose of improving driving safety and comfort of the railways quickly becoming popular. To conducted gas pressure welding to ensure the strength safety of continuous welded rail and rotating bending test tensile test was conducted. The element to determine the tensile strength of gas pressure welds at experiments be attributed to more upsetting length than pressure, according to increases of upsetting length, from brittle fracture to ductile fracture was observed. Through the biopsy of the fracture surface, according to the presence of brittle fracture could be evaluated to strength safety. In addition, mechanical strength of gas pressure welding depending on changes in upsetting length was different. Rotary bending test results were obtained to the infinite life according to exhibited higher fatigue limit of 373MPa at upsetting length 25mm.

A Study on the Fracture behavior in Silicon Wafer using the Ultra-Precision Micro Positioning System (초미세 위치결정시스템을 이용한 실리콘 웨이퍼의 파괴거동에 관한 연구)

  • 이병룡
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.38-44
    • /
    • 2000
  • The background of this study lies in he investigation of the formation mechanism of ductile mode(nkanometer-size) chips of brittle materials such as fine ceramics glass and silicon. As the first step to achieve this purpose this paper intends to observe the micro-deformation behavior of these materials in sub${\mu}{\textrm}{m}$ depth indentation tests using a diamond indentor. In this study it was developed Ultra-Micro Indentation. Device using the PZT actuator. Experimentally by using the Ultra-Micro Indentation device the micro fracture behavior of the silicon wafer was investigated. It was possible that ductile-brittle transition point in ultimate surface of brittle material can be detected by adding an acoustic emission sensor system to the Ultra-Micro Indentation appartus.

  • PDF

Procedure of Pressure/Temperature Curves Generation for Brittle Fracture Prevention of Reactor Vessel

  • Park, M. K.;Kim, Y. J.;Kim, J. M.;Jheon, J. H.;Kim, I. K.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.290-295
    • /
    • 1996
  • The purpose of this study is to establish the pressure/temperature curves of Reactor Coolant System for brittle fracture prevention. The pressure/temperature curve is the basis to select RC Pump and limits to operate the plant. Based on the plant operation experience, this curve should be re-generated periodically in order to ensure the structural integrity using data from the test of reactor vessel surveilance materials to compensate for the irradiation effects. This study provides the procedure of pressure/temperature curve generation in term of brittle fracture prevention of reactor vessel. Using the UCN 3&4 data, the sample pressure/temperature curve was generated, and it was compared with those of YGN 3&4 based on the stress and $RT_{NDT}$value.

  • PDF

A Study on Thermomechanical Analysis of Laser Ablation on Cr thin film (크롬박막의 레이저 어블레이션에서 열적.기계적 해석에 관한 연구)

  • 윤경구;장원석;이성국;김재구;나석주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.914-917
    • /
    • 2001
  • Single-shot laser damage of thin Cr films on glass substrates has been studied to understand the cracking and peeling-off mechanism. A numerical model is developed for the calculation of transient heat transfer and thermal stresses in Cr films during excimer laser irradiation and cooling, the transient temperature, and the stress-strain fields are analyzed by using a three-dimensional finite-element model of heat flow. According to the numerical analysis for the experimentally determined cracking and peeling-off conditions, cracking is found to be the result of the tensile brittle fracture due to the excessive thermal stresses formed during the cooling process, while peeling-off is found to be the combined result of films bulging from the softened glass surface at higher temperature and the tensile brittle fracture during the cooling process.

  • PDF