• Title/Summary/Keyword: brittle failure

Search Result 584, Processing Time 0.033 seconds

An Application of Plasticity Model for Ice Deformation Characteristics (수변형 특성에 있어서 소성 모델의 응용)

  • Choe, Gyeong-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.15-21
    • /
    • 1990
  • This study focuses the mechanical deformation response predicted by the plasticity model for polycrystalline ice. To describe various deformation characteristics, ice is idealized as a perfectly plastic material using an asymptotic exponential failure criterion. This criterion is suite for describing materials which exhibit brittle deformation at low hydrostatic pressure and ductile deformation at high hydrostatic pressure. The results are compared to those of continuum damage mechanics model. Plasticity model shows good agreement with damage model and experimental results for high confining pressures even at high strain-rates which is usually considered as a brittle condition under uniaxial compression.

  • PDF

An Application of Plasticity Model for Ice Deformation Characteristics (수변형 특성에 있어서 소성 모델의 응용)

  • Choe, Gyeong-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.165-165
    • /
    • 1990
  • This study focuses the mechanical deformation response predicted by the plasticity model for polycrystalline ice. To describe various deformation characteristics, ice is idealized as a perfectly plastic material using an asymptotic exponential failure criterion. This criterion is suite for describing materials which exhibit brittle deformation at low hydrostatic pressure and ductile deformation at high hydrostatic pressure. The results are compared to those of continuum damage mechanics model. Plasticity model shows good agreement with damage model and experimental results for high confining pressures even at high strain-rates which is usually considered as a brittle condition under uniaxial compression.

Peridynamic simulation of brittle-ice crushed by a vertical structure

  • Liu, Minghao;Wang, Qing;Lu, Wei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.2
    • /
    • pp.209-218
    • /
    • 2017
  • Sea ice is the main factor affecting the safety of the Arctic engineering. However, traditional numerical methods derived from classical continuum mechanics have difficulties in resolving discontinuous problems like ice damage. In this paper, a non-local, meshfree numerical method called "peridynamics", which is based on integral form, was applied to simulate the interaction between level ice and a cylindrical, vertical, rigid structure at different velocities. Ice in the simulation was freshwater ice and simplified as elastic-brittle material with a linear elastic constitutive model and critical equivalent strain criterion for material failure in state-based peridynamics. The ice forces obtained from peridynamic simulation are in the same order as experimental data. Numerical visualization shows advantages of applying peridynamics on ice damage. To study the repetitive nature of ice force, damage zone lengths of crushing failure were computed and conclude that damage zone lengths are 0.15-0.2 times as ice thickness.

Circumferential Confinement Effect of Circular Bridge Pier with FRP Wrapping in Earthquake (지진발생시 FRP 보강이 횡방향 구속에 미치는 효과)

  • 최영민;황윤국;권태규;윤순종
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.280-287
    • /
    • 2003
  • The bridge columns with lap-splice reinforcements in earthquake suffered a brittle bond-slip failure due to the deterioration of lap-spliced longitudinal reinforcement without developing its flexural capacity or ductility. In this case, such a brittle failure can be controlled by the seismic retrofit using FRP wrapping. The retrofitted columns using FRP laminated circular tube showed significant improvement in seismic performance due to FRP's confinement effect. This paper presents the circumferential confinement effect of existing circular bridge pier strengthened with FRP wrapping for poor lap-splice details. The effects on the confinement of FRP wrapping, such as gap lengths between footing and FRP, fiber orientations, and thicknesses of FRP, were investigated by Quasi-static experiments.

  • PDF

Seismic Retrofit of Existing Circular Bridge Columns Using FRP for Flexural Performance Enhancement (기존 원형교각의 휨성능 개선을 위한 FRP활용 내진보강)

  • 권태규;최영민;황윤국;윤순종
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.793-798
    • /
    • 2002
  • This paper presents the analytical results on the seismic retrofit of circular bridge columns with poor lap-splice details using FRP jacket. The as-built column suffered brittle failure due to the deterioration of lap-spliced longitudinal reinforcement without developing its flexural capacity or ductility. The retrofitted columns using FRP jacket showed significant improvement in seismic performance due to FRP's confinement effect. FRP's confinement effect is predicted by the classical elasticity solution for the laminated circular tube manufactural with several layers, and induces the flexural failure instead of bondslip failure.

  • PDF

Experimental Study of Hybrid Super Coating (HSC) and Cast Reinforcement for Masonry Wall (하이브리드 슈퍼코팅(HSC)과 유리섬유를 통한 조적조 내진보강 연구)

  • Lee, Ga Yoon;Moon, A hea;Lee, Seung Jun;Kim, Jae Hyun;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.213-221
    • /
    • 2021
  • Many Korean domestic masonry structures constructed since 1970 have been found to be vulnerable to earthquakes because they lack efficient lateral force resistance. Many studies have shown that the brick and mortar suddenly experience brittle fracture and out-of-plane collapse when they reach the inelastic range. This study evaluated the seismic retrofitting of non-reinforced masonry with Hybrid Super Coating (HSC) and Cast, manufactured using glass fiber. Four types of specimen original specimen (BR-OR), one layered HSC (BR-HS-O), two-layered HSC (BR-HS-B), one layered HSC, and Cast (BR-CT-HS-O) were constructed and analyzed using compression, flexural tensile, diagonal compression, and triplet tests. The specimen responses were presented and discussed in load-displacement curves, maximum strength, and crack propagation. The compressive strength of the retrofit specimens slightly increased, while the flexural tensile strength of the retrofit specimens increased significantly. In addition, the HSC and Cast also produced a considerable increase in the ductile response of specimens before failure. Diagonal compression test results showed that HSC delayed brittle cracks between the mortar and bricks and resulted in larger displacement before failure than the original brick. The triplet test results confirmed that the bonding strength of the retrofit specimens also increased. The application of HSC and Cast was found to restrain the occurrence of brittle failure effectively and delayed the collapse of masonry wall structures.

Seismic Performance of High-Stringth RC Short Columns Confined in Rectangular Steel Tube (강관구속 고강도 철근콘크리트 기둥의 내진성능)

  • 한병찬
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.182-190
    • /
    • 1997
  • A new method to prevent reinforced concrete columns from brittle failure. The method is called transversely reinforcing method in which only the critical regions are confined in steel tube. The steel tubes can change the failure mode of the latter columns from the shear to the flexure. The steel tubes also increase the compressive strength, shear strength and deformation capacity of the infilled concrete. The following conclusions are reached on bases of the study on the seismic performance of the high-strength RC rectangualr short columns confined in steel tube with shear span tho depth ratio of 2.0 The brittle shear failure of high-strength reinforced concrete short columns with large amount of longitudinal bars, which cannot prevented by using the maximum amount of welded hoops, can be prevented by using the steel tube which confines all the maximum amount of welded hoops, can be prevented by using the steel tube which confines all the concrete inclusive of cover concrete. High-strength RC short columns confined in rectangular steel tube provided excellent enhancement of seismic performance but, found that plastic buckling of the steel tube in the hinge regions tended to occur when the columns were subjected to large cyclic lateral displacements. In order to prevent the plastic buckling when the columns lies on large on cyclic lateral displacements, the steel ribs were used for columns. Tests have established that the columns provide excellent enhancement of seismic performance of inadequately confined columns.

  • PDF

Impact Damage on Brittle Materials with Small Spheres (I)

  • Woo, Su-Chang;Kim, Moon-Saeng;Shin, Hyung-Seop;Lee, Hyeon-Chul
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.1
    • /
    • pp.30-36
    • /
    • 2003
  • Brittle materials such as glasses and ceramics, which are very weak under impact loading, show fragile failure mode due to their low fracture toughness and crack sensitivity. When brittle materials are subjected to impact by small spheres, high contact pressure occurs at the impacted surface causing local damage on the specimen. This damage is a dangerous factor in causing the final fracture of structures. In this research, the crack propagation process of soda-lime glass by the impact of small spheres is explained and the effects of several constraint conditions for impact damage were studied by using soda-lime glass; that is, the effects for the materials and sizes of impact ball, thickness of specimen and residual strength were evaluated. Especially, this research has focused on the damage behavior of ring cracks, cone cracks and several other kinds of cracks.

A Closed-Form Solution for Circular Openings in an Elastic-Brittle-Plastic Extended Spatial Mobilized Plane Medium

  • Wu, Chuangzhou;Guo, Wei;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • Based on the extended spatial mobilization plane (SMP) criterion, we present an elastic-brittle-plastic solution for an axisymmetric cylindrical tunnel. The influences of the intermediate principal compressive stress and material strain-softening behavior are considered. Closed-form formulas for the critical support force, radius of plastic zone, and distributions of stress and displacement in surrounding rock are proposed. The elastic-plastic solution based on SMP is compared with the Kastner solution to verify the credibility of the obtained elastic-plastic solution. The elastic-brittle-plastic solution following the SMP criterion and the current solution based on the Mohr-Coulomb criterion are also compared. The rock strain-softening rate and the intermediate principal stress affect the stability of the surrounding rock. The results provide guidance for optimizing the design of support systems for tunnels.