• Title/Summary/Keyword: brittle failure

Search Result 588, Processing Time 0.027 seconds

Tensile Properties of Hybrid FRP Rods with Glass and Carbon Fibers (유리와 탄소섬유로 제작된 하이브리드 FRP 로드의 인장특성에 관한 실험연구)

  • You, Yong-Jun;Park, Ji-Sun;Park, Young-Hwan;Kim, Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.275-282
    • /
    • 2006
  • Recently, Fiber Reinforced Polymers(FRP) has been emerged as an alternative material to solve the corrosion of steel reinforcement in reinforced concrete structures. FRP exhibits higher specific strength and lower weight compared to steel reinforcement. Moreover, good resistance to corrosion of the FRP may be useful in aggressive environments causing deterioration such as chloride environment. However, causes for higher initial cost of FRP than that of steel, little information on the long-term behavior of FRP, and brittle failure make the efforts to apply FRP in civil structures slow. Glass fiber among the fibers used to manufacture FRP can be seen as the most beneficial material with regard to initial costs. But its low elastic modulus, which attains barely a quarter of steel, nay thus lead to excessive deflections when used as reinforcement for flexural members. This research was carried out on the tensile properties of hybrid rods made with glass and carbon fibers to improve those of FRP rod made with glass fiber. Parameters were resin type and the arrangement of glass and carbon fibers. The tensile properties of hybrid rods were compared with those of rods manufactured with only glass or carbon fibers. The results indicated that the tensile properties of hybrid rod were good when the carbon fiber was arranged in the core.

An Experimental Study on Mechanical Properties of Ultra-High Strength Powder Concrete (압축강도 300MPa 이상의 초고강도 분체콘크리트 개발을 위한 실험적 연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Park, Jung-Hoon;Kim, Heoun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.287-295
    • /
    • 2010
  • In this study, ordinary Portland cement was used and the air void was minimized by using minute quartz as the filler. In addition, steel fibers were used to mitigate the brittle failure problem associated with high strength concrete. This study is in progress to make an Ultra-high strength powdered concrete (UHSPC) which has compressive strength over 300 MPa. To increase the strength of concrete, we have compared and analyzed the compressive strengths of the concretes with different mix proportions and curing conditions by selecting quartz sand, dolomite, bauxite, ferro silicon which have diameters less than 0.6 mm and can increase the bond strength of the transition zone. Ultra-high strength powdered concrete, which is different from conventional concrete, is highly influenced by the materials in the mix. In the study, the highest compressive strength of the powdered concrete was obtained when it is prepared with ferro silicon, followed in order by Bauxite, Dolomite, and Quartz sand. The amount of ferro silicon, when the highest strength was obtained, was 110%, of the weight of the cement. SEM analysis of the UHSPC showed that significant formation of C-S-H and Tobermorite due to high temperature and pressure curing. Production of Ultrahigh strength powdered concrete which has 28-day compressive strength upto 341MPa has been successfully achieved by the following factors; steel fiber reinforcement, fine particled aggregates, and the filling powder to minimize the void space, and the reactive materials.

Punching Shear Strength of the Void Transfer Plate (중공 전이 슬래브의 뚫림 전단 강도)

  • Han, Sang-Whan;Park, Jin-Ah;Kim, Jun-Sam;Im, Ju-Hyeuk;Park, Young-Mi
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.367-374
    • /
    • 2010
  • The transfer slab system is a structural system that transfers the loads from the upper shear wall structure to the lower columns. This is a costly system due to a very thick slab, and the relatively high cost can be mitigated by introducing voids in the slab. However, this system of flat plate containing voids is vulnerable to brittle failure caused by punching shear in vicinity of slab-column connection. Thus, the punching shear capacity of the void system is very important. However, the current code doesn't provide a clear design provision for the strength of slabs with a void section. In this study, experimental study was conducted to investigate the punching shear strength of the void slab system. The shear strength of the specimens was predicted by current code and previous researches. In result, the punching shear strength of the void system is determined as the least value calculated at critical section located a distance d/2 from the face of the column and the center of the void section using the effective area at critical section.

Reversed Lateral Load Tests on RC Frames Retrofitted with BRB and FRP (좌굴방지가새와 FRP로 보강된 RC골조의 반복 횡하중 실험)

  • Lee, Han-Seon;Lee, Kyung-Bo;Hwang, Seong-Jun;Cho, Chang-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.683-692
    • /
    • 2011
  • In piloti-type low-rise RC residential buildings, severe damages have been usually concentrated at piloti stories under the earthquake. In this study, a piloti story was retrofitted by installation of buckling-restrained braces (BRB's) to increase strength and stiffness of piloti story and by application of fiber reinforced polymer (FRP) sheet on columns to avoid the brittle shear and axial failure of columns. To verify this retrofit performance, reversed cyclic lateral load tests were performed on 1:5 scale bare and retrofitted frames. The test results showed that yield strength (43.2 kN) appeared to be significantly larger than design value (30 kN) due to the increase of strength in the compression side, but the stiffness value (11.6 kN/mm) turned out to be approximately one-half of the design value (24.2 kN/mm). The reasons for this difference in stiffness were due to slippage at joint between the frame and the BRB's, displacement and rotation at footing. The energy absorption capacity of the retrofitted frame was 7.5 times larger than that of the bare frame. The change of the number of load cells under the footing from 2 to 1 reduced lateral stiffness from 11.6 kN/mm to 6 kN/mm, which was only three times larger than that of the bare frame (2.1 kN/mm).

Nonlinear Flexural Modeling of Prestressed Concrete Beams with Composite Materials (복합소재 프리스트레스트 콘크리트보의 비선형 휨 모델링)

  • ;;Naaman, Antoine
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.269-280
    • /
    • 1998
  • Recently, application of composite materials such as fiber reinforced concretes(FRCs) and fiber reinforced plastics(FRPs) in conjunction with conventional structural components has become one of the main research areas. A proper use of advanced composite materials requires understanding their resistance mechanism and failure mode when they are applied to structures or their components. Particular considerations are given in this research to develop an analytical model which can predict the nonlinear flexural responses of bonded and unbonded prestressed concrete beams possibly having layers of different cementitious composite matrices in a section and/or FRP tendons. The block concept is used, which can be regarded as an intermediate modeling method between the couple method with one block and the layered method with multiply sliced layers in a section. In order to find a particular deflection point of a beam under load, solutions to the 2N-variables are found numerically by using approximate N-force equilibrium equations and N-moment equilibirum equations. The model is shown to successfully predict the flexual behavior of variously reinforced bonded and unbonded prestressed concrete beams. The model is also successful in simulating a gradually increasing load after sudden drop inload resistance due to fracture of one or more FRP tendons. This feature is useful in tracing the overall load-deflection response of a beam prestressed with brittle FRP tendons.

Development of Green Cement Type Grouting Materials with High Toughness and Non-Shrinkage Including Powder of Waste Tire and Resin (분말 폐타이어와 분말 수지를 함유한 환경친화적 고인성 시멘트계 무수축 그라우트재의 개발)

  • Park, Seok-Kyun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.623-630
    • /
    • 2007
  • Grouting materials are used for the unification of superstructural and substructural body like bridge seat (shoe) or machinery pedestal and e.t.c by filling their intercalary voids. Accordingly, grouting materials have been developed and used mainly with products of high strength because those materials are constructed specially in a part receiving large or impact load. In this situation, the structural body constructed by grouting materials with high stiffness-centered (caused by high strength) products is apt to cause brittle failure when receiving over a limit stress and to cause cracks according to cumulative fatigue by continuous and cyclic load. In addition, grouting materials are apt to cause cracks by using too much rapid hardening agents that give rise to high heat of hydration to maintain high strength at early age. In this study, to overcome these problems, cement type grouting materials including powder of waste tire and resin as elastic materials which aim to be more stable construction and to be improvement of mother-body's unification are developed and endowed with properties of high toughness and high durability add to existing properties of high flowability, non-shrinkage and high strength. Besides, this study contribute to of for green construction materials for being possible recycling industrial waste like waste tire and flyash. On the whole, seven type mixing conditions are tested and investigated to choose the best mixing condition.

Flexural Behavior of Segmental U-Girder and Composite U-Girder Using Ultra High Performance Concrete (초고강도 섬유보강 콘크리트를 사용한 분절형 U거더 및 합성 U거더의 휨거동)

  • Lee, Seung-Jae;Makhbal, Tsas-Orgilmaa;Kim, Sung-Tae;Han, Sang-Mook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.290-297
    • /
    • 2017
  • The flexural behavior tests of UHPC segmental U-girder and composite U-girder which has 160MPa compressive strength and 15.4m length were carried out. The test variables are volume fraction of steel fibers and slab over the U-girder. Each U-girder has longitudinal re-bars in web and lower flange. PS tendons which has 2 of 15.2mm diameter in upper flange and PS tendons which has 7 of 15.2mm diameter in lower flange were arranged and prestressed at onetime in U-girder connection stage. Enough strong prestressing force which applied to U-girder due to ultra high performance concrete strength can withstand the self weight and dead load in U-girder stage. By comparison with the brittle behavior of U-girder, composite U-girder showed the stable and ductile behavior. After the construction of slab over U-girder, flexural load capacity of composite U-girder can bear the design load in final construction stage with only one time prestressing operation which already carried out in U-girder stage. This simple prestressing method due to the ultra high strength concrete have the advantage in construction step and cost. The shear key which has narrow space has the strong composite connection between ultra high strength concrete U-girder and high strength concrete slab didn't show any slip and opening right before failure load.

Correlation Between Tensile Strength and Compressive Strength of Ultra High Strength Concrete Reinforced with Steel Fiber (초고강도 강섬유 보강 콘크리트의 인장강도와 압축강도 사이의 상관관계에 관한 연구)

  • Bae, Baek-Il;Choi, Hyun-Ki;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.253-263
    • /
    • 2015
  • Ultra-high strength concrete which have 100 MPa compressive strength or higher can be developed applying RPC(Reactive Powder Concrete). Preventing brittle failure under compression and tension, ultra-high strength concrete usually use the steel fibers as reinforcements. For the effective use of steel fiber reinforced ultra-high strength concrete, estimation of tensile strength is very important. However, there are insufficient research results are available with no relation between them. Therefore, in this study, correlation between compressive strength and tensile strength of ultra-high strength concrete was investigated by test and statistical analysis. According to test results, increasing tendency of tensile strength was also shown in the range of ultra-high strength. Evaluation of test results of this study and collected test results were carried out. Using 284 splitting test specimens and 265 flexural test specimens, equations suggested by previous researchers cannot be applied to ultra-high strength concrete. Therefore, using database and test results, regression analysis was carried out and we suggested new equation for splitting and flexural tensile strength of steel fiber reinforced ultra-high strength concrete.

A study on the fatigue characteristics of SLS 3D printed PA2200 according to uniaxial cyclic tensile loading (SLS 3D 프린터를 이용하여 제작된 PA2200의 단축 반복 인장하중에 따른 피로 특성에 관한 연구)

  • Park, Jun-Soo;Jeong, Eui-Chul;Choi, Han-Sol;Kim, Mi-Ae;Yun, Eon-Gyeong;Kim, Yong-Dae;Won, Si-Tae;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • In this study, the fatigue behavior and fatigue life characteristics of PA2200 specimens fabricated by SLS 3D printer were studied. Fatigue tests were performed according to the standard specification (ASTM E468) and fatigue life curves were obtained. In order to perform the fatigue test, mechanical properties were measured according to the test speed of the simple tensile test, and the self-heating temperature of the specimen according to the test speed was measured using an infrared temperature measuring camera in consideration of heat generation due to plastic deformation. There was no significant difference within the set test speed range and the average self-heating temperature was measured at 38.5 ℃. The mechanical strength at the measured temperature showed a relatively small difference from the mechanical strength at room temperature. Fatigue test conditions were established through the preceding experiments, and the loading conditions below the tensile strength at room temperature 23 ℃ were set as the cyclic load. The maximum number of replicates was less than 100,000 cycles, and the fracture behavior of the specimens with the repeated loads showed the characteristics of Racheting. It was confirmed that SLS 3D printing PA2200 material could be applied to the Basquin's S-N diagram for the fatigue life curve of metal materials. SEM images of the fracture surface was obtained to analyze the relationship between the characteristics of the fracture surface and the number of repetitions until failure. Brittle fracture, crazing fracture, grain melting, and porous fracture surface were observed. It was shown that the larger the area of crazing damage, the longer the number of repetitions until fracture.

Investigation of Lateral Resistance of Short Pile by Large-Scale Load Tests (실물 재하시험을 통한 짧은말뚝의 횡방향 저항거동 평가)

  • Lee, Su-Hyung;Choi, Yeong-Tae;Lee, Il-Wha;Yoo, Min-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.8
    • /
    • pp.5-16
    • /
    • 2017
  • When a lateral load is applied to a short pile whose embedded depth is relatively smaller than its diameter, an overturning failure occurs. To investigate the behavior of laterally loaded short piles, several model tests in laboratory scales had been carried out, however the behavior of large moment carrying piles for electric poles, traffic sign and road lamp, etc. have not been revealed yet. This paper deals with the real-scale load tests for 750 mm diameter short piles. To simulate the actual loading condition, very large moment was mobilized by applying lateral loads to the location 8 m away from the pile head. Three load tests changing the pile embedded lengths to 2.0 m, 2.5 m, and 3.0 m were carried out. The test piles overturned abruptly with very small displacement and rotation before the failures. These brittle failures are in contrast with the ductile failures shown in the former model tests with the relatively smaller moment to lateral load ratio. Comparisons of the test results with three existing methods for the estimation of the ultimate lateral capacity show that the method assuming the rotation point at pile tip matches well when the embedded depth is small, however, as the embedded depth increases the other two methods assuming the inversion of soil pressure with respect to rotation points in pile length match better.