• 제목/요약/키워드: bridge vibration

검색결과 841건 처리시간 0.029초

교량검사 굴절로봇 작업붐의 진동제어 (Vibration Control of Working Booms on Articulated Bridge Inspection Robots)

  • 황인호;이후석;박영환;이종세
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.178-183
    • /
    • 2008
  • A robot crane truck is being developed by the Bridge Inspection Robot Development Interface(BRIDI) for an automated and/or teleoperated bridge inspection. At the end of the telescoping boom allows the operator to scan the bridge structure under the deck trough the camera. Boom vibration induced by wind and deck movement can cause serious problems in this scanning system. This paper presents a control system to mitigate such vibration of the robot boom In the proposed control system an actuator is installed at the end of the working boom. This control system is studied using a mathematical model analysis with LQ control algorithm and a scaled model test in the laboratory. The study indicates that the proposed system is efficient for the vibration control of the robot booms, thereby demonstrating its immediate applicability in the field.

  • PDF

Study of ground vibration induced by high-speed trains moving on multi-span bridges

  • Ju, S.H.
    • Structural Engineering and Mechanics
    • /
    • 제59권2호
    • /
    • pp.277-290
    • /
    • 2016
  • This paper investigates the ground vibration induced by high-speed trains moving on multi-span continuous bridges. The dynamic impact factor of multi-span continuous bridges under trainloads was first determined in the parametric study, which shows that the dynamic impact factor will be large when the first bridge vertical natural frequency is equal to the trainload dominant frequencies, nV/D, where n is a positive integer, V is the train speed, and D is the train carriage interval. In addition, more continuous spans will produce smaller dynamic impact factors at this resonance condition. Based on the results of three-dimensional finite element analyses using the soil-structure interaction for realistic high-speed railway bridges, we suggest that the bridge span be set at 1.4 to 1.5 times the carriage interval for simply supported bridges. If not, the use of four or more-than-four-span continuous bridges is suggested to reduce the train-induced vibration. This study also indicates that the vibration in the train is major generated from the rail irregularities and that from the bridge deformation is not dominant.

진동모니터링을 위한 자가진동발전기의 개발 (Development of Vibration Powered Generator for Vibration Monitoring)

  • 김재민;최남섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.434-441
    • /
    • 2003
  • This paper presents a generator for stand-alone vibration monitoring system of bridge structure based on ambient vibration of bridge. In this paper, a novel electric power generator which has minimum effect of armature reaction is proposed. The related mechanical and electrical design equations are obtained and a pilot generator has been implemented. In addition, the charging system for extremely low generator current is discussed, and some improvements are identified for the system. This investigation reveals that diode characteristics of rectifier is dominant factor in the charging process. Finally, both the simulation, which uses real measurement data of the Namhae bridge as input of the pilot generator, and indoor test are carried out. The results showed the applicability and effectiveness of the stand-alone vibration powered generator.

  • PDF

Active mass damper control for cable stayed bridge under construction: an experimental study

  • Chen, Hao;Sun, Zhi;Sun, Limin
    • Structural Engineering and Mechanics
    • /
    • 제38권2호
    • /
    • pp.141-156
    • /
    • 2011
  • A cable stayed bridge under construction has low structural damping and is not as stable as the completed bridge. Control countermeasures, such as the installation of energy dissipating devices, are thus required. In this study, the general procedure and key issues on adopting an active control device, the active mass damper (AMD), for vibration control of cable stayed bridges under construction were studied. Taking a typical cable stayed bridge as the prototype structure; a lab-scale test structure was designed and fabricated firstly. A baseline FEM model was then setup and updated according to the modal parameters measured from vibration test on the structure. A numerical study to simulate the bridge-AMD control system was conducted and an efficient LQG-based controller was designed. Based on that, an experimental implementation of AMD control of the transverse vibration of the bridge model was performed. The results from numerical simulation and experimental study verified that the AMD-based active control was feasible and efficient for reducing dynamic responses of a complex structural system. Moreover, the discussion made in this study clarified some critical problems which should be addressed for the practical implementation of AMD control on real cable-stayed bridges.

Dynamic analysis of thin-walled open section beam under moving vehicle by transfer matrix method

  • Xiang, Tianyu;Xu, Tengfei;Yuan, Xinpeng;Zhao, Renda;Tong, Yuqiang
    • Structural Engineering and Mechanics
    • /
    • 제30권5호
    • /
    • pp.603-617
    • /
    • 2008
  • Three dimensional coupled bending-torsion dynamic vibrations of thin-walled open section beam subjected to moving vehicle are investigated by transfer matrix method. Through adopting the idea of Newmark-${\beta}$ method, the partial differential equations of structural vibration can be transformed to the differential equations. Then, those differential equations are solved by transfer matrix method. An iterative scheme is proposed to deal with the coupled bending-torsion terms in the governing vibration equations. The accuracy of the presented method is verified through two numerical examples. Finally, with different eccentricities of vehicle, the torsional vibration of thin-walled open section beam and vertical and rolling vibration of truck body are investigated. It can be concluded from the numerical results that the torsional vibration of beam and rolling vibration of vehicle increase with the eccentricity of vehicle. Moreover, it can be observed that the torsional vibration of thin-walled open section beam may have a significant nonlinear influence on vertical vibration of truck body.

진동사용성을 고려한 철도교량구조물의 강성한계 분석 (Estimation of Stiffness Limit for Railway Bridge Vibration Serviceability)

  • 전법규;김남식;김성일
    • 한국철도학회논문집
    • /
    • 제11권5호
    • /
    • pp.489-498
    • /
    • 2008
  • 일반적으로 허용처짐 기준은 정적 사용성과 구조적안전성에 그 기반을 두고 있으며 진동사용성에 대한 고려는 부족하다. 따라서 진동사용성을 고려할 수 있는 교량의 허용처짐 기준이 필요하다고 판단된다. 본 논문에서는, 한국철도교설계기준의 허용처짐기준을 주파수영역의 진동사용성 기준과 비교하였으며, 프랑스 및 일본의 철도교설계기준의 진동사용성 허용기준 또한 분석하였다. 그 결과, 한국철도교설계기준의 경우 열차의 속도에 따른 기준으로 진동지속시간이 부분적으로 고려되었지만 진동사용성은 만족하지 못하고 있는 것으로 판단되었으며, 국외 철도교설계기준비 분석결과, 진동사용성을 고려한 허용처짐기준을 제시할 수 있을 것으로 판단하였다. 공용중인 철도교량의 진동사용성을 평가하기위하여 다양한 형식의 철도교량의 진동신호를 측정하였다. 그리고, 현장에서 적용하기 편리한 진동사용성 처짐 및 강성한계를 제시하기 위하여 공용중인 교량을 대상으로 차량 교량 상호작용해석을 수행하였다.

In-situ dynamic loading test of a hybrid continuous arch bridge

  • Gou, Hongye;Li, Liang;Hong, Yu;Bao, Yi;Pu, Qianhui
    • Structural Engineering and Mechanics
    • /
    • 제77권6호
    • /
    • pp.809-817
    • /
    • 2021
  • In this study, the dynamic behavior of a three-span hybrid continuous arch bridge under vehicle loading is investigated. The natural vibration characteristics of the bridge were analyzed through pulsation test. In the dynamic loading test, the vibrations of the bridge under different truck speeds and different pavement conditions were tested, and time histories of deflection and acceleration of the bridge were measured. Based on the dynamic loading test, the impact coefficient was analyzed. The results indicate that the pavement smoothness had more impacts on the vibration of the bridge than the truck's speed. The vertical damping of the bridge under the excitation of the trucks is larger than the transverse damping. Resonance occurs at the side span of the bridge under a truck at 10 km/h.

Vibration behaviors of a damaged bridge under moving vehicular loads

  • Yin, Xinfeng;Liu, Yang;Kong, Bo
    • Structural Engineering and Mechanics
    • /
    • 제58권2호
    • /
    • pp.199-216
    • /
    • 2016
  • A large number of bridges were built several decades ago, and most of which have gradually suffered serious deteriorations or damage due to the increasing traffic loads, environmental effects, and inadequate maintenance. However, very few studies were conducted to investigate the vibration behaviors of a damaged bridge under moving vehicles. In this paper, the vibration behaviors of such vehicle-bridge system are investigated in details, in which the effects of the concrete cracks and bridge surface roughness are particularly considered. Specifically, two vehicle models are introduced, i.e., a simplified four degree-of-freedoms (DOFs) vehicle model and a more complex seven DOFs vehicle model, respectively. The bridges are modeled in two types, including a single-span uniform beam and a full scale reinforced concrete high-pier bridge, respectively. The crack zone in the reinforced concrete bridge is considered by a damage function. The bridge and vehicle coupled equations are established by combining the equations of motion of both the bridge and vehicles using the displacement relationship and interaction force relationship at the contact points between the tires and bridge. The numerical simulations and verifications show that the proposed modeling method can rationally simulate the vibration behaviors of the damaged bridge under moving vehicles; the effect of cracks on the impact factors is very small and can be neglected for the bridge with none roughness, however, the effect of cracks on the impact factors is very significant and cannot be neglected for the bridge with roughness.

스카이브릿지로 연결된 고층건물의 진동제어 성능평가 (Performance Evaluation of Vibration Control of High-rise Buildings Connected by Sky-Bridge)

  • 김현수;양아람;이동근;안상경;오정근
    • 한국공간구조학회논문집
    • /
    • 제8권4호
    • /
    • pp.91-100
    • /
    • 2008
  • 본 연구에서는 sky-bridge로 연결된 고층건물의 진동제어성능을 검토하여 보았다. Sky-bridge를 이용한 진동제어의 원리는 서로 다른 동적특성을 가진 구조물이 sky-bridge를 통하여 제어력을 발휘함으로써 전체 시스템의 응답을 줄이는 것이다. 본 연구에서는 실제 건설 중인 sky-bridge로 연결된 고층건물(49층 및 42층)을 대상으로 구조물의 변위, 가속도 및 베어링반력, sky-bridge의 응력 등을 해석적인 방법으로 검토하였다. 이를 위하여 역사지진, 인공지진 및 풍동실험을 통해서 얻은 풍하중 시간이력을 사용하였다. 해석결과 sky-bridge를 사용하여 고층건물의 풍응답 및 지진응답을 효과적으로 줄일 수 있는 것을 확인하였다.

  • PDF

Assessment of ride safety based on the wind-traffic-pavement-bridge coupled vibration

  • Yin, Xinfeng;Liu, Yang;Chen, S.R.
    • Wind and Structures
    • /
    • 제24권3호
    • /
    • pp.287-306
    • /
    • 2017
  • In the present study, a new assessment simulation of ride safety based on a new wind-traffic-pavement-bridge coupled vibration system is developed considering stochastic characteristics of traffic flow and bridge surface. Compared to existing simulation models, the new assessment simulation focuses on introducing the more realistic three-dimensional vehicle model, stochastic characteristics of traffic, vehicle accident criteria, and bridge surface conditions. A three-dimensional vehicle model with 24 degrees-of-freedoms (DOFs) is presented. A cellular automaton (CA) model and the surface roughness are introduced. The bridge deck pavement is modeled as a boundless Euler-Bernoulli beam supported on the Kelvin model. The wind-traffic-pavement-bridge coupled equations are established by combining the equations of both the vehicles in traffic, pavement, and bridge using the displacement and interaction force relationship at the patch contact. The numerical simulation shows that the proposed method can simulate rationally useful assessment and prevention information for traffic, and define appropriate safe driving speed limits for vulnerable vehicles under normal traffic and bridge surface conditions.