• Title/Summary/Keyword: bridge tower

Search Result 139, Processing Time 0.027 seconds

Impacts of wind shielding effects of bridge tower on railway vehicle running performance

  • Wu, Mengxue;Li, Yongle;Zhang, Wei
    • Wind and Structures
    • /
    • v.25 no.1
    • /
    • pp.63-77
    • /
    • 2017
  • When railway vehicles run by towers of long span bridges, the railway vehicles might experience a sudden load-off and load-on phenomenon in crosswind conditions. To ensure the running safety of the railway vehicles and the running comfort of the passengers, some studies were carried out to investigate the impacts of sudden changes of aerodynamic loads on moving railway vehicles. In the present study, the aerodynamic coefficients which were measured in wind tunnel tests using a moving train model are converted into the aerodynamic coefficients in the actual scale. The three-component aerodynamic loads are calculated based on the aerodynamic coefficients with consideration of the vehicle movement. A three-dimensional railway vehicle model is set up using the multibody dynamic theory, and the aerodynamic loads are treated as the inputs of excitation varied with time for kinetic simulations of the railway vehicle. Thus the dynamic responses of the railway vehicle passing by the bridge tower can be obtained from the kinetic simulations in the time domain. The effects of the mean wind speeds and the rail track positions on the running performance of the railway vehicle are discussed. The three-component aerodynamic loads on the railway vehicle are found to experience significant sudden changes when the vehicle passes by the bridge tower. Correspondingly, such sudden changes of aerodynamic loads have a large impact on the dynamic performance of the running railway vehicle. The dynamic responses of the railway vehicle have great fluctuations and significant sudden changes, which is adverse to the running safety and comfort of the railway vehicle passing by the bridge tower in crosswind conditions.

An analytical algorithm for assessing dynamic characteristics of a triple-tower double-cable suspension bridge

  • Wen-ming Zhang;Yu-peng Chen;Shi-han Wang;Xiao-fan Lu
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.325-343
    • /
    • 2024
  • Triple-tower double-cable suspension bridges have increased confinement stiffness imposed by the main cable on the middle tower, which has bright application prospects. However, vertical bending and torsional vibrations of the double-cable and the girder are coupled in such bridges due to the hangers. In particular, the bending vibration of the towers in the longitudinal direction and torsional vibrations about the vertical axis influence the vertical bending and torsional vibrations of the stiffening girders, respectively. The conventional analytical algorithm for assessing the dynamic features of the suspension bridge is not directly applicable to this type of bridge. This study attempts to mitigate this problem by introducing an analytical algorithm for solving the triple-tower double-cable suspension bridge's natural frequencies and mode shapes. D'Alembert's principle is employed to construct the differential equations of the vertical bending and torsional vibrations of the stiffening girder continuum in each span. Vibrations of stiffening girders in each span are interrelated via the vibrations of the main cables and the bridge towers. On this basis, the natural frequencies and mode shapes are derived by separating variables. The proposed algorithm is then applied to an engineering example. The natural frequencies and mode shapes of vertical bending and torsional vibrations derived by the analytical algorithm agreed well with calculations via the finite element method. The fundamental frequency of vertical bending and first- and second-order torsion frequencies of double-cable suspension bridges are much higher than those of single-cable suspension bridges. The analytical algorithm has high computational efficiency and calculation accuracy, which can provide a reference for selecting appropriate structural parameters to meet the requirements of dynamics during the preliminary design.

Wind-induced vibrations and suppression measures of the Hong Kong-Zhuhai-Macao Bridge

  • Ma, Cunming;Li, Zhiguo;Meng, Fanchao;Liao, Haili;Wang, Junxin
    • Wind and Structures
    • /
    • v.32 no.3
    • /
    • pp.179-191
    • /
    • 2021
  • A series of wind tunnel tests, including 1:50 sectional model tests, 1:50 free-standing bridge tower tests and 1:70 full-bridge aeroelastic model tests were carried out to systematically investigate the aerodynamic performance of the Hong Kong-Zhuhai-Macao Bridge (HZMB). The test result indicates that there are three wind-resistant safety issues the HZMB encounters, including unacceptable low flutter critical wind speed, vertical vortex-induced vibration (VIV) of the main girder and galloping of the bridge tower in across-wind direction. Wind-induced vibration of HZMB can be effectively suppressed by the application of aerodynamic and mechanical measures. Acceptable flutter critical wind speed is achieved by optimizing the main girder form (before: large cantilever steel box girder, after: streamlined steel box girder) and cable type (before: central cable, after: double cable); The installations of wind fairing, guide plates and increasing structural damping are proved to be useful in suppressing the VIV of the HZMB; The galloping can be effectively suppressed by optimizing the interior angle on the windward side of the bridge tower. The present works provide scientific basis and guidance for wind resistance design of the HZMB.

Response evaluation and vibration control of a transmission tower-line system in mountain areas subjected to cable rupture

  • Chen, Bo;Wu, Jingbo;Ouyang, Yiqin;Yang, Deng
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.151-171
    • /
    • 2018
  • Transmission tower-line systems are commonly slender and generally possess a small stiffness and low structural damping. They are prone to impulsive excitations induced by cable rupture and may experience strong vibration. Excessive deformation and vibration of a transmission tower-line system subjected to cable rupture may induce a local destruction and even failure event. A little work has yet been carried out to evaluate the performance of transmission tower-line systems in mountain areas subjected to cable rupture. In addition, the control for cable rupture induced vibration of a transmission tower-line system has not been systematically conducted. In this regard, the dynamic response analysis of a transmission tower-line system in mountain areas subjected to cable rupture is conducted. Furthermore, the feasibility of using viscous fluid dampers to suppress the cable rupture-induced vibration is also investigated. The three dimensional (3D) finite element (FE) model of a transmission tower-line system is first established and the mathematical model of a mountain is developed to describe the equivalent scale and configuration of a mountain. The model of a tower-line-mountain system is developed by taking a real transmission tower-line system constructed in China as an example. The mechanical model for the dynamic interaction between the ground and transmission lines is proposed and the mechanical model of a viscous fluid damper is also presented. The equations of motion of the transmission tower-line system subjected to cable rupture without/with viscous fluid dampers are established. The field measurement is carried out to verify the analytical FE model and determine the damping ratios of the example transmission tower-line system. The dynamic analysis of the tower-line system is carried out to investigate structural performance under cable rupture and the validity of the proposed control approach based on viscous fluid dampers is examined. The made observations demonstrate that cable rupture may induce strong structural vibration and the implementation of viscous fluid dampers with optimal parameters can effectively suppress structural responses.

Seismic responses of transmission tower-line system under coupled horizontal and tilt ground motion

  • Wei, Wenhui;Hu, Ying;Wang, Hao;Pi, YongLin
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.635-647
    • /
    • 2019
  • Tests and theoretical studies for seismic responses of a transmission tower-line system under coupled horizontal and tilt (CHT) ground motion were conducted. The method of obtaining the tilt component from seismic motion was based on comparisons from the Fourier spectrum of uncorrected seismic waves. The collected data were then applied in testing and theoretical analysis. Taking an actual transmission tower-line system as the prototype, shaking table tests of the scale model of a single transmission tower and towers-line systems under horizontal, tilt, and CHT ground motions were carried out. Dynamic equations under CHT ground motion were also derived. The additional P-∆ effect caused by tilt motion was considered as an equivalent horizontal lateral force, and it was added into the equations as the excitation. Test results were compared with the theoretical analysis and indicated some useful conclusions. First, the shaking table test results are consistent with the theoretical analysis from improved dynamic equations and proved its correctness. Second, the tilt component of ground motion has great influence on the seismic response of the transmission tower-line system, and the additional P-∆effect caused by the foundation tilt, not only increases the seismic response of the transmission tower-line system, but also leads to a remarkable asymmetric displacement effect. Third, for the tower-line system, transmission lines under ground motion weaken the horizontal displacement and acceleration responses of transmission towers. This weakening effect of transmission lines to the main structure, however, will be decreased with consideration of tilt component.

Equivalent Suspension Bridge Model for Tower Design of Multi-span Suspension Bridges (다경간 현수교 주탑 설계를 위한 등가 현수교 모델)

  • Choi, Dong-Ho;Na, Ho-Sung;Yi, Ji-Yop;Gwon, Sun-Gil
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.669-677
    • /
    • 2011
  • The multi-span suspension bridge generally has more than three towers and two main spans. To economically and effectively design a multi-span suspension bridge, the proper stiffness ratio of the center tower to the side tower must be determined. This study was conducted to propose a method of figuring out briefly the structural behavior of the towers in a multi-span suspension bridge. In the equivalent suspension bridge model, the main cable of the multi-span suspension bridge is idealized as an equivalent cable spring, and the external loads of horizontal and vertical forces that were calculated using the tensile forces of the main cable were applied on top of the towers. The equilibrium equations of the equivalent multi-span suspension bridge model were derived and the equations were solved via nonlinear analysis. To verify the proposed method, a sample four-span suspension bridge with a main span length of 3,000 m was analyzed using thefinite element method. The displacements and moment reactions of each tower in the proposed method were compared with the FEM analysis results. Consequently, the results of the analysis of the equivalent suspension bridge model tended to be consistent with the results of the FEM analysis.

Vibration Control for Tower of Suspension Bridge under Turbulence using TMD (난류하에서의 TMD에 의한 현수교 주탑의 진동제어)

  • Kim, Ki Du;Hwang, Yoon Koog;Byun, Yun Joo;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.181-191
    • /
    • 1997
  • Before cables are constructed, tower of suspension bridge is behaved as a cantilever type. Buffeting occured by unsteady loading of the tower due to velocity fluctuation in the oncoming flow has a wind velocity consistent with fundamental frequency of the tower and may give rise to large response by the tower resonance. To reduce the dynamic response by buffeting, the behavior of tower with TMD(Tuned Mass Damper) has studied using finite element method in time domain. The buffeting was obtained by transforming the velocity spectrum in frequency domain to random variable in certain time domain. The most probable maximum displacement which can be occured during the time interval was obtained using peak factor. The optimum location for TMD installation and TMD specification were decided by parametric study. Also, the effect of vibration control about various wind velocity was studied by the TMD which has optimum specification and location.

  • PDF

Seismic performance of a fiber-reinforced plastic cable-stayed bridge

  • Hodhod, Osama A.;Khalifa, Magdi A.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.4
    • /
    • pp.399-414
    • /
    • 1997
  • This paper presents an investigation into the seismic response characteristics of a proposed ligh-weight pedestrian cable-stayed bridge made entirely from Glass Fiber Reinforced Plastics(GFRP). The study employs three dimensional finite element models to study and compare the dynamic characteristics and the seismic response of the GFRP bridge to a conventional Steel-Concrete (SC) cable-stayed bridge alternative. The two bridges were subjected to three synthetic earthquakes that differ in the frequency content characteristics. The performance of the GFRP bridge was compared to that of the SC bridge by normalizing the live load and the seismic internal forces with respect to the dead load internal forces. The normalized seismically induced internal forces were compared to the normalized live load internal forces for each design alternative. The study shows that the design alternatives have different dynamic characteristics. The light GFRP alternative has more flexible deck motion in the lateral direction than the heavier SC alternative. While the SC alternative has more vertical deck modes than the GFRP alternative, it has less lateral deck modes than the GFRP alternative in the studied frequency range. The GFRP towers are more flexible in the lateral direction than the SC towers. The GFRP bridge tower attracted less normalized base shear force than the SC bridge towers. However, earthquakes, with peak acceleration of only 0.1 g, and with a variety of frequency content could induce high enough seismic internal forces at the tower bases of the GFRP cable-stayed bridge to govern the structural design of such bridge. Careful seismic analysis, design, and detailing of the tower connections are required to achieve satisfactory seismic performance of GFRP long span bridges.

Experimental investigation on a freestanding bridge tower under wind and wave loads

  • Bai, Xiaodong;Guo, Anxin;Liu, Hao;Chen, Wenli;Liu, Gao;Liu, Tianchen;Chen, Shangyou;Li, Hui
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.951-968
    • /
    • 2016
  • Long-span cross-strait bridges extending into deep-sea waters are exposed to complex marine environments. During the construction stage, the flexible freestanding bridge towers are more vulnerable to environmental loads imposed by wind and wave loads. This paper presents an experimental investigation on the dynamic responses of a 389-m-high freestanding bridge tower model in a test facility with a wind tunnel and a wave flume. An elastic bridge model with a geometric scale of 1:150 was designed based on Froude similarity and was tested under wind-only, wave-only and wind-wave combined conditions. The dynamic responses obtained from the tests indicate that large deformation under resonant sea states could be a structural challenge. The dominant role of the wind loads and the wave loads change according to the sea states. The joint wind and wave loads have complex effects on the dynamic responses of the structure, depending on the approaching direction angle and the fluid-induced vibration mechanisms of the waves and wind.

Input Shaper Design for Tower Crane in Consideration of Nonlinear Coupled Motions (타워크레인의 비선형 연성 운동 특성을 고려한 입력성형기 설계)

  • Kim, Byung-Gyu;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.9
    • /
    • pp.88-95
    • /
    • 2009
  • Input shaping has been a very effective control method for reducing payload swing in industrial bridge and gantry cranes. However, conventional input shapers often degrade performance when applied to tower cranes because of the nonlinear coupled dynamics between rotational and radial motions in tower cranes. To alleviate this problem, a new input shaper for tower cranes is developed by means of dynamic modeling, analysis and optimization. This work investigates the tower crane dynamics along with parameters of the tower crane varied. A performance index for input shaper design is proposed so as to reduce the coupled residual vibration of a tower crane using only rotational motion of tower crane. The proposed new input shaper is verified to be effective through simulations and experiments.