• Title/Summary/Keyword: bridge surface

Search Result 609, Processing Time 0.035 seconds

Dynamic Behavior of a Open-Deck Steel Bridge considering Surface Irregularities of Rail Joints (레일이음매에 의한 주행면 불규칙성을 고려한 판형교의 동적거동)

  • Kim Sung-Il;Kim Hyun-Min;Oh Ji-Taek
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1028-1033
    • /
    • 2004
  • The open deck steel bridge is the most common type in railway bridges. Steel I-shaped girders are connected with sleepers directly without ballast and moving train loads are transmitted directly to the girder, so this bridge has weak characteristics on impact. Therefore, considerable accelerations can cause unsatisfactory dynamic behavior of the open deck steel bridge. Especially, Impact created at rail joints can increase the dynamic response of the bridge and this phenomenon would be injurious to passenger comfort. In the present study, dynamic behavior of the open deck steel bridge which has a rail joint is estimated through experimental studies and bridge-train interaction analysis considering surface irregularities by rail joints.

  • PDF

A Study on the Dynamic Impact of the AGT System Bridge, Caused by a Spall (스폴링에 의한 AGT 시스템 교량의 충격에 관한 연구)

  • Woo Sung-Won;Yun Suk-Koo;Lee An-Ho;Song Jae-Pil
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.342-347
    • /
    • 2004
  • The dynamic responses of a PSC bridge for automated guide-way transit system are investigated by analytical approach of bridge-vehicle interaction. In this study, the dynamic responses, concerned with a spall on the surface of bridge are emphasized. A simply supported pre-stressed concrete bridge is adopted as a numerical example. Dynamics of three-dimensional dynamic interaction system between bridges and vehicles is considered in this study. The FE method and modal analysis is used for modeling a bridge for dynamic response analysis. An AGT vehicle is idealized as a model with 11DOFs including lateral motion. It was found that the dynamic responses of bridge can be affected by a spall of surface. Especially, the vibrations are increased much more when a spall is exist.

  • PDF

Effect of vehicle flexibility on the vibratory response of bridge

  • Lalthlamuana, R.;Talukdar, Sudip
    • Coupled systems mechanics
    • /
    • v.3 no.2
    • /
    • pp.147-170
    • /
    • 2014
  • In the recent times, dimensions of heavy load carrying vehicle have changed significantly incorporating structural flexibility in vehicle body. The present paper outlines a procedure for the estimation of bridge response statistics considering structural bending modes of the vehicle. Bridge deck roughness has been considered to be non homogeneous random process in space. Influence of pre cambering of bridge surface and settlement of approach slab on the dynamic behavior of the bridge has been studied. A parametric study considering vehicle axle spacing, mass, speed, vehicle flexibility, deck unevenness and eccentricity of vehicle path have been conducted. Dynamic amplification factor (DAF) of the bridge response has been obtained for several of combination of bridge-vehicle parameters. The present study reveals that flexible modes of vehicle can reduce dynamic response of the bridge to the extent of 30-37% of that caused by rigid vehicle model. However, sudden change in the bridge surface profile leads to significant amount of increment in the bridge dynamic response even if flexible bending modes remain active. The eccentricity of vehicle path and flexural/torsional rigidity ratios plays a significant role in dynamic amplification of bridge response.

Dynamic Response of Steel Plate Girder Bridges by Numerical Dynamic Analysis (동적해석에 의한 강판형교의 동적응답)

  • Chung, Tae Ju;Shin, Dong-Ku;Park, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.39-49
    • /
    • 2008
  • Dynamic responses of steel plate girder bridges considering road surface roughness of bridge and bridge-vehicle interaction are investigated by numerical analysis. Simply supported steel plate girder bridges with span length of 20 m, 30 m, and 40 m from "The Standardized Design of Highway Bridge Superstructure" published by the Korean Ministry of Construction are used for bridge model and the road surface roughness of bridge decks are generated from power spectral density(PSD) function for different road. Three different vehicles of 2- and 3-axle dump trucks, and 5-axle tractor-trailer(DB-24), are modeled three dimensionally. For the bridge superstructure, beam elements for the main girder, shell elements for concrete deck, and rigid links between main girder and concrete deck are used. Impact factor and DLA of steel plate girder bridges for different spans, type of vehicles and road surface roughnesses are calculated by the proposed numerical analysis model and compared with those specified by several bridge design codes.

Sound Radiation from Vibrating Bridges subjuct to Moving Vehicles (주행차량에 의한 교량의 동적거동과 음향방사특성)

  • 김상효;이용선;장원석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.45-51
    • /
    • 2002
  • An acoustic finite element model of a bridge is developed to evaluate the noise generated by the traffic-induced vibration of the bridge. The dynamic response of a multi-girder bridge, modeled by a 3-dimensional frame element model, is analyzed with a 3-axle 8 DOFs truck model and a 5-axle 13 DOFs semi-trailer. The flat plate element is used to analyze the acoustic pressure due to the fluid-structure interactions between the vibrating surface and contiguous acoustic fluid medium. The radiation fields of noise with a specified distribution of vibrating velocity and pressure on the structural surface are also computed using the Kirchhoff-Helmholtz integral. Although the noise produced by the bridge vibration is not serious in itself, which is below the audible frequency range, it should be considered as an interaction problem between vehicle noise and bridge vibration noise in order to evaluate the traffic noise around the bridge.

  • PDF

Dynamic Response Analysis of Bridge-AGT Vehicle Interaction System (교량-AGT 차량 상호작용에 의한 교량의 동적응답)

  • Kim, Hyun-Ho;Rha, Sang-Ju;Song, Jae-Pil
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.561-568
    • /
    • 2006
  • Dynamic equations of motion for the interaction system of bridge and vehicle are derived to investigate the dynamic responses of bridge and vehicles induced by moving automated guide-way transit(AGT) vehicle and surface roughness of bridge. The vehicle model for ACT vehicle is idealized as 11 DOF including yawing, lateral translation and steering of wheels, and the bridges are modeled with finite element method. The AGT vehicle model was verified by experimental study. Parametric studies are carried out to investigate the effect of vehicle speed, surface roughness, stiffness and damping of the suspension system, AGT vehicles and dynamic wheel loads of the AGT vehicles. From the parametric study it can be seen that the dynamic incremental factor of the bridge and dynamic responses of vehicles have a tendency to increase with vehicle speeds, surface roughness and the stiffness of AGT vehicle suspension system. On the other hand those dynamic wheel loads have tendencies to decrease in according to increase of damping of the suspension system.

Probabilistic determination of initial cable forces of cable-stayed bridges under dead loads

  • Cheng, Jin;Xiao, Ru-Cheng;Jiang, Jian-Jing
    • Structural Engineering and Mechanics
    • /
    • v.17 no.2
    • /
    • pp.267-279
    • /
    • 2004
  • This paper presents an improved Monte Carlo simulation for the probabilistic determination of initial cable forces of cable-stayed bridges under dead loads using the response surfaces method. A response surface (i.e. a quadratic response surface without cross-terms) is used to approximate structural response. The use of the response surface eliminates the need to perform a deterministic analysis in each simulation loop. In addition, use of the response surface requires fewer simulation loops than conventional Monte Carlo simulation. Thereby, the computation time is saved significantly. The statistics (e.g. mean value, standard deviation) of the structural response are calculated through conventional Monte Carlo simulation method. By using Monte Carlo simulation, it is possible to use the existing deterministic finite element code without modifying it. Probabilistic analysis of a truss demonstrates the proposed method' efficiency and accuracy; probabilistic determination of initial cable forces of a cable-stayed bridge under dead loads verifies the method's applicability.

Penetration of De-icing Salt in Bare Concrete Bridge Decks on Highways (고속도로 콘크리트 노출 바닥판에서의 제설 염화물의 침투 특성)

  • Suh, Jin-Won;Rhee, Ji-Young;Ku, Bon-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.165-168
    • /
    • 2006
  • The major cause of deterioration for the bare concrete bridge decks exposed to de-icing chemicals would be chloride-induced reinforcement corrosion. Thus, in this paper, in order to predict time to corrode for concrete bridge decks on highways, the chloride concentration was measured with depth from the surface. Then, the surface chloride concentration and apparent diffusion coefficient were calculated by regression. The premature failure of bare concrete decks were mostly related with thin cover depth and poor concrete property(high permeability). The good protection of deck surface might contribute to the prolongation of the service life of bare concrete bridge decks.

  • PDF

Tensile Bond Strength Westing When Changing Adhesion Method of Double-sided Waterproof Sheet Used on Surface Layer of Bridge-deck (교면용 양면 시트방수재 상부 포장층 재료에 따른 부착방법 변경시 인장접착강도 확인)

  • An, Ki-Won;Kim, Chun-Hag;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.217-218
    • /
    • 2019
  • In this study, to overcome the limitation of material application as the surface layer of bridge decks (asphalt concrete, concrete), a newly developed waterproof sheet is proposed to be usable for both asphalt concrete and concrete. Subsequent tensile bond strength was tested, and the test results showed that the tensile bond strengths were similar to depending on the type of the surface layer material for bridge decks, confirming the applicability of the proposed material.

  • PDF

Reliability analysis of steel cable-stayed bridges including soil-pile interaction

  • Cheng, Jin;Liu, Xiao-luan
    • Steel and Composite Structures
    • /
    • v.13 no.2
    • /
    • pp.109-122
    • /
    • 2012
  • An efficient and accurate algorithm is proposed to evaluate the reliability of cable-stayed bridges accounting for soil-pile interaction. The proposed algorithm integrates the finite-element method and the response surface method. The finite-element method is used to model the cable-stayed bridge including soil-pile interaction. The reliability index is evaluated based on the response surface method. Uncertainties in the superstructure, the substructure and load parameters are incorporated in the proposed algorithm. A long span steel cable-stayed bridge with a main span length of 1088 m built in China is considered as an illustrative example. The reliability of the bridge is evaluated for the strength and serviceability performance functions. Results of the study show that when strength limit states for both girder and tower are considered, soil-pile interaction has significant effects on the reliability of steel cable-stayed bridges. Further, a detailed sensitivity study shows that the modulus of subgrade reaction is the most important soil-pile interaction-related parameter influencing the reliability of steel cable-stayed bridges.