• Title/Summary/Keyword: bridge seismic isolation

Search Result 91, Processing Time 0.028 seconds

Field testing of a seismically isolated concrete bridge

  • Chang, K.C.;Tsai, M.H.;Hwang, J.S.;Wei, S.S.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.3
    • /
    • pp.241-257
    • /
    • 2003
  • The first seismically isolated structure in Taiwan was completed in early 1999. Seven new bridges of the Second National Freeway located at Bai-Ho area, a region which is considered to be of high seismic risk, have been designed and constructed with lead-rubber seismic isolation bearings. Since this is the first application of seismic isolation method to the practical construction in Taiwan, field tests were conducted for one of the seven bridges to evaluate the assumptions and uncertainties in the design and construction. The test program is composed of ambient vibration tests, forced vibration tests, and free vibration tests. For the free vibration tests, a special test setup composed of four 1000 kN hydraulic jacks and a quick-release mechanism was designed to perform the function of push-and-quick release. Valuable results have been obtained based on the correlation between measured and analytical data so that the analytical model can be calibrated. Based on the analytical correlation, it is concluded that the dynamic characteristics and free vibration behavior of the isolated bridge can be well captured when the nonlinear properties of the bearings are properly considered in the modeling.

Dynamic Analysis for Bridge Using the Experimental Results of Hysteretic Damping Bearing and Dynapot (교량용 내진 받침의 동특성 실험 결과를 이용한 교량의 해석)

  • 윤정방;박동욱;이동하;안창모
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.465-474
    • /
    • 2001
  • Base Isolation system is an effective design strategy that provides a practical substitute for the seismic design of bridge. In this study, the dynamic tests was performed on HDB (Hysteretic Damping Bearing) and Dynapot. Then, the dynamic analysis was carried out for a bridge using the experimental results to estimate the seismic performance of bearings. Analysis for bridge was performed for four types of earthquake loadings. The result of dynamic test and theoretical analysis indicate that the performance of HDB and Dynapot is appropriate for the earthquake loading.

  • PDF

Pounding analysis of RC bridge considering spatial variability of ground motion

  • Han, Qiang;Dong, Huihui;Du, Xiuli;Zhou, Yulong
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.1029-1044
    • /
    • 2015
  • To investigate the seismic pounding response of long-span bridges with high-piers under strong ground motions, shaking table tests were performed on a 1/10-scaled bridge model consisting of three continuous spans with rigid frames and one simply-supported span. The seismic pounding responses of this bridge model under different earthquake excitations including the uniform excitation and the traveling wave excitations were experimentally studied. The influence of dampers to the seismic pounding effects at the expansion joints was analyzed through nonlinear dynamic analyses in this research. The seismic pounding effects obtained from numerical analyses of the bridge model are in favorable agreement with the experimental results. Seismic pounding effect of bridge superstructures is dependent on the structural dynamic properties of the adjacent spans and characteristics of ground motions. Moreover, supplemental damping can effectively mitigate pounding effects of the bridge superstructures, and reduce the base shear forces of the bridge piers.

Seismic Design and Isolation Design for Highway Bridges (교량구조물의 내진설계 및 면진설계(교량 받침을 중심으로))

  • 전규식
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.115-122
    • /
    • 1998
  • Earthquake damage civil engineering structures every year in the world and bridges are no exception. Bridge structures have proven to be vulnerable to earthquake, sustaining damage to substructure and foundation and being totally destroys as superstructures collapse from their supporting elements. The poor seismic performance of bridge structures is surprising in view of the substantial advance made in design and construction for vertical load. Recently, bridge spans have been pushed further than before, alignment has become increasingly complex and aesthetic requirement have been become more demanding. To reduce the seismic force and to improve the safety of the advanced bridges, the bridge bearings which are the substructures and foundations and their connections to the superstructure become more important and critical elements. Therefore, the functions about seismic devices to be using as bridge bearing are discussed.

  • PDF

Development of Compression-Only Bridge Seismic Reinforcement Method (압축전담 교량 내진보강공법 개발 연구)

  • Jang, Yoo-Sik;Yoon, Won-Sub;You, Kwang-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1221-1230
    • /
    • 2022
  • In this study, a seismic reinforcement method was studied to improve the seismic performance of aged bridges. The construction method developed in this study is a compression-only bridge seismic reinforcement method, and has excellent economic feasibility and workability compared to existing construction methods. In the case of aged bridges, there was an advantage that could compensate for the disadvantages that it was difficult to apply the existing reinforcement method. For the newly developed method, the effect of reinforcement was analyzed through resin analysis. As a result of the analysis, when the reinforcement was applied, the axial reinforcement effect was excellent, and the field applicability was excellent as it showed better results than the existing seismic isolation backing method.

Seismic behavior of isolated bridges with additional damping under far-field and near fault ground motion

  • Losanno, Daniele;Hadad, Houman A.;Serino, Giorgio
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.119-130
    • /
    • 2017
  • This paper presents a numerical investigation on the seismic behavior of isolated bridges with supplemental viscous damping. Usually very large displacements make seismic isolation an unfeasible solution due to boundary conditions, especially in case of existing bridges or high risk seismic regions. First, a suggested optimal design procedure is introduced, then seismic performance of three real bridges with different isolation systems and damping levels is investigated. Each bridge is studied in four different configurations: simply supported (SSB), isolated with 10% damping (IB), isolated with 30% damping (LRB) and isolated with optimal supplemental damping ratio (IDB). Two of the case studies are investigated under spectrum compatible far-field ground motions, while the third one is subjected to near-fault strong motions. With respect to different design strategies proposed by other authors, results of the analysis demonstrated that an isolated bridge equipped with HDLRBs and a total equivalent damping ratio of 70% represents a very effective design solution. Thanks to confirmed effective performance in terms of base shear mitigation and displacement reduction under both far field and near fault ground motions, as well as for both simply supported and continuous bridges, the suggested control system provides robustness and reliability in terms of seismic performance also resulting cost effective.

Seismic Fragility Analysis by Boundary Conditions of a Two-pylon Concrete Cable-stayed Bridge (2주탑 콘크리트 사장교의 경계조건별 지진 취약도 분석)

  • Shin, Yeon-Woo;Hong, Ki-Nam;Yeon, Yeong-Mo;Ji, Sang-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.77-85
    • /
    • 2020
  • In this study, the seismic fragility curve according to the boundary conditions is created for a two-pylon concrete cable-stayed bridge, and the effect of the boundary conditions on the seismic fragility of the target bridge is evaluated. An analysis model for the target bridge is constructed using Midas Civil, and a nonlinear time history analysis is performed by applying the fiber element, concrete and rebar material models. The boundary conditions between the pylon and the stiffened girder are classified into four types: rigid, unconstrained, pot bearing, and seismic isolation bearing, and the seismic fragility curves are created for each boundary condition. The plastic hinge section of the pylon, the connection part, and the cable are selected as weak members, and the earthquake vulnerability curve is created for them. As a result of the analysis, it is found that the seismic isolation bearing model shows the lowest damage probability in the pylon and the connection part, and the seismic fragility of the cable is less affected by the boundary conditions than other members.

Seismic vibration control of bridges with excessive isolator displacement

  • Roy, Bijan K.;Chakraborty, Subrata;Mishra, Sudib K.
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1451-1465
    • /
    • 2016
  • The effectiveness of base isolation (BI) systems for mitigation of seismic vibration of bridges have been extensively studied in the past. It is well established in those studies that the performance of BI system is largely dependent on the characteristics of isolator yield strength. For optimum design of such systems, normally a standard nonlinear optimization problem is formulated to minimize the maximum response of the structure, referred as Stochastic Structural Optimization (SSO). The SSO of BI system is usually performed with reference to a problem of unconstrained optimization without imposing any restriction on the maximum isolator displacement. In this regard it is important to note that the isolator displacement should not be arbitrarily large to fulfil the serviceability requirements and to avoid the possibility of pounding to the adjacent units. The present study is intended to incorporate the effect of excessive isolator displacement in optimizing BI system to control seismic vibration effect of bridges. In doing so, the necessary stochastic response of the isolated bridge needs to be optimized is obtained in the framework of statistical linearization of the related nonlinear random vibration problem. A simply supported bridge is taken up to elucidate the effect of constraint condition on optimum design and overall performance of the isolated bridge compared to that of obtained by the conventional unconstrained optimization approach.

Evaluation of Seismic Responses of Isolated Bridges Considering the Flexibility of Piers (교각의 강성을 고려한 지진격리교량의 응답특성 평가)

  • Seo, Hyun-Woo;Kim, Nam-Sik;Cheung, Jin-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.662-665
    • /
    • 2004
  • In this paper, based on shaking table test results on a seismically isolated bridge model, an inelastic numerical model is refined by using Bouc-Wen model representing the hysteretic behavior of isolators. Seismic responses of isolated bridges are numerically investigated varying with relative stiffness ratios, which is a ratio of the effective stiffness of isolator to the lateral stiffness of bridge pier. From the results, it is found that an adequate range of relative stiffness ratio could be defined for seismic design of isolated bridges without considering the flexibility of piers.

  • PDF

Stability improvement for response attenuation of bridge columns with one dimensional meta-material based isolation systems

  • Saumitra Jain;Sumiran Pujari;Arghadeep Laskar
    • Earthquakes and Structures
    • /
    • v.24 no.3
    • /
    • pp.193-204
    • /
    • 2023
  • The concept of meta-material-based isolation systems (MMIS) for structural columns has been revisited in the present study in order to enhance the stability of rubber pads by using steel shim reinforced rubber (SSRR) layers. Analytical calculations have shown a significant improvement in the stability of MMIS with SSRR pads. Finite element analysis has also been conducted to further show the reduced response of a bridge with the modified MMIS under excitations having frequencies within the corresponding attenuation zone (AZ) as compared to the response of a conventional bridge without MMIS. FE analysis further shows the stress generated on the bridge with MMIS systems are within safe limits. Finally, a generalized procedure has been developed to design bridge columns with the proposed modified MMIS.