• Title/Summary/Keyword: bridge response

Search Result 1,069, Processing Time 0.027 seconds

SEISMIC RESPONSE CHARACTERISTICS OF THE MULTI-SPAN CONTINUOUS GBRIDGE WITH SHEAR KEYS (전단키와 있는 다경간 연속교의 지진응답특성)

  • 이지훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.120-127
    • /
    • 1998
  • This paper deals with the dynamic responses of the multi-span continuous bridge with longitudinal shear keys. It is motivated by a need to understand the effects of longitudinal shear keys which may be used for the reduction of the longitudinal seismic force in continuous bridges. The results show that (1) The force reduction of fixed pier is proportional to the ratio of gap size and elastic maximum displacement of the bridges without shear keys ; (2) The thermal movement has little effect on the response of the continuous bridges with shear keys. Also the simplified equation is proposed to calculate the maximum response of the continuous bridges with longitudinal shear keys. The equation requires only the elastic analysis results of the bridge and the gap size between superstructure and shear keys.

  • PDF

Analysis of Dynamic Response and Vibration Mitigation for Steel Box Girder Railway Bridges (강박스거더 철도교량의 동적거동 및 진동저감 방안 분석)

  • Hwang, Eui Seung;Kim, Do Young;Jang, Seong Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.487-495
    • /
    • 2017
  • Recently rapid-transit railway systems have been constructed in many developing countries due to its advantages in congestions and environmental problems. Railway bridges show many different aspects compared to road bridges and passenger comfort and traffic safety are one of them. In particular, deflection and acceleration due to repeated vibration characteristics have a structural weakness that can cause undesirable response. Especially steel railway bridges have been known to have weaknesses due to its relatively light weights compared to concrete bridges. The purpose of this study is to analyze the dynamic response of steel box girder bridges due to passing trains then propose the appropriate method to mitigate the level of vibration in terms of accelerations. Three steel railway bridges are tested and the numerical model to analyze the dynamic response of the bridge by passing train are developed. For the verification of the model, the natural frequency extracted using the acceleration data measured in the bridge is compared with the natural frequency of the numerical model. To mitigate the acceleration level of the bridge, parametric studies are performed to find the effectiveness of the method. Based on the analysis, the appropriate method is proposed for decreasing the acceleration of the bridge for passenger comfort and traffic safety.

Response Dominant Frequency Analysis for Scour Safety Evaluation of Railroad Piers (철도 교각의 세굴 안정성 평가를 위한 응답 지배주파수 분석)

  • Jung, Hyun-Seok;Lee, Myungjae;Yoo, Mintaek;Lee, Il-Wha
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.83-95
    • /
    • 2020
  • In order to evaluate the stability of the geo-structure of railway bridge, the response dominant frequency was analyzed based on a series of impact vibration load test results. The specifications of the experiment piers were obtained by referring to the completion design data, and when data was missing, a field study was conducted. The impact vibrations test according to the scouring progress was carried out at one pier scheduled to be abandoned, and it was confirmed that the response dominant frequency can be utilized as an evaluation index for scour. In addition, the response dominant frequency was measured through an impact load test at 46 piers in 5 bridges in operation, and the scour safety of the bridge was evaluated by comparing it with the japanese proposal formula.

Band-pass Filter based Artificial Filter Bank for Structural Health Monitoring (구조 건전도 모니터링을 위한 대역통과필터 기반 인공필터뱅크)

  • Heo, Gwanghee;Jeon, Joonryong;Jeon, Seunggon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.843-855
    • /
    • 2015
  • This study developed a band-pass filter based artificial filter bank(BAFB) based on that in order to efficiently obtain the significant dynamic responses. The BAFB was then optimized about the El-centro earthquake wave which was often used in the construction research, and the software implementation of BAFB was finally embedded in the wireless unified management system(WiUMS). For the evaluation of the developed BAFB, a real time dynamic response experiment was performed on a cable-stayed bridge model, and the response of the cable-stayed bridge model was measured using both the traditional wired system and the developed BAFB-based WiUMS. The experiment results showed that the compressed dynamic response acquired by the BAFB-based WiUMS matched significantly with that of the traditional wired system while still carrying sufficient modal information of the cable-stayed bridge. Finally, the developed BAFB was able to reconstruct or re-sample the dynamic response wholly from the compressed response signal, and it can be applied as a new kind of measurement system for a wireless sensor networks based structural health monitoring system that secures both economy and efficiency.

A Study on Dynamic Response of Truss Bridge due to Moving Train Loads (열차하중의 주행에 의한 트러스교의 동적응답에 관한 연구)

  • Chang, Dong Il;Choi, Kang Hee;Lee, Jong Deuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.1-10
    • /
    • 1989
  • In this paper, dynamic response of a truss bridge due to constantly moving train loads is analysed. Dynamic response of the bridge is found by the mode superposition method with the solution of the eigenvalue problem by Householder transformation and QL algorithm. To prove the validity of the analysis procedure, the response due to a very slowly moving load is compared with the result from the static analysis program, and the dynamic response is also compared with the result from the direct integration method. Based upon this, the variation of dynamic amplification factors is investigated by changing the train types and speeds, and the result is compared with the code specified impact factor. From this study, it was known that the dynamic amplification factor is not quite different by train types in low speeds but in high speeds it is, and in the case of electric car and U. I. C. loads the factor could exceed the code specified impact factor depending upon the speed.

  • PDF

Serviceability Limit State and Response Modification Factors (기능수행수준과 응답수정계수)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.2
    • /
    • pp.149-154
    • /
    • 2012
  • While the Earthquake Resistant Design Part of Korean Roadway Bridge Design Code provides design procedures for the No Collapse Requirement, requirements for the Serviceability Limit State are not clearly provided. The basic design method to meet the No Collapse Requirement is the spectrum analysis method using response modification factors and the Serviceability Limit State is determined by both the importance factor and the response modification factor applied in the design procedure. The importance factor can be simply applied according to the bridge importance category, however, in moderate/low seismic regions the application of the response modification factor may bring different result according to design conditions. In this study, for a typical bridge in the moderate/low seismic regions, determination procedures for the Serviceability Limit State are reviewed by carrying out earthquake resistant design and supplementary provisions for the Earthquake Resistant Design Part are identified based on the study results.

THE HISTOPATHOLOGICAL STUDY ON THE RESPONSE OF THE REMAINING PULP TISSUES TO THE ADHESIVE RESIN AFTER PULPOTOMY (치수절단 후 접착레진 도포에 대한 잔존치수조직 반응에 관한 연구)

  • Lim, Sung-Sam;Park, Dong-Sung;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.2
    • /
    • pp.720-730
    • /
    • 1997
  • This study was performed to observe the histopathological response to the bonding resin directly applied on the remaining pulp tissues. 40 teeth from 3 adult dogs were pulpotomized with a sterile round bur and sharp excarvater. In the control group, $Ca(OH)_2$ powder was applied on the pulp tissue and the cavities were sealed with IRM cement. In the experimental group 1, Superbond C&B was applied on the remaining pulp and the cavities conditioned with 10-3 solution were filled with the mixture of the MMA liquid, PMMA powder and Catalyst. Multi-purpose adhesive was used on the remaining pulp tissue in the experimental group 2 and Z-100 was filled in the cavities. In the experimental group 3, Clearfil photobond applied and directly photo-cured on the pulp tissue, then the cavities were treated with CA agent (10% citric acid and 20% $CaCl_2$ aqueous solution) for 20 seconds, washed and applied with Clearfil photobond then filled with Protect liner. The experimental animals were sacrified at the 1st, 2nd, and 4th week. The specimens were routinely processed and stained with H-E for light microscopic observation. The results were as followed : 1. In the experimental group 1, the number and characteristics of the dentin bridge formation case was similar to those in the control group and less cases were observed in the experimental group 2 and 3 than experimental group 3. The inflammatory response in experimental group 1 was less than that in the control group at 1st week but there had been little difference at between 2nd and 4th week. 2. The number of the dentin bridge in experimental group 2 was less than that in control group and experimental group 1. The inflammatory response of the experimental group 1 was similar to that of experimental group 1 but less than that of the control group. A number of bleeding and vascular congestion were observed. The least inflammatory response was seen in the experimental group 2 among all groups. 3. In the experimental group 3, one case of the dentin bridge formation was observed and that was the same as that in the experimental group 2 but smaller than that of the control and experimental group 1. The inflammatory response of the experimental group 3 was least at the 1st week and most at the 4th week in the all group.

  • PDF

Analysis on running safety of train on bridge with wind barriers subjected to cross wind

  • Zhang, T.;Xia, H.;Guo, W.W.
    • Wind and Structures
    • /
    • v.17 no.2
    • /
    • pp.203-225
    • /
    • 2013
  • An analysis framework for vehicle-bridge dynamic interaction system under turbulent wind is proposed based on the relevant theory of wind engineering and dynamics. Considering the fluctuating properties of wind field, the stochastic wind velocity time history is simulated by the Auto-Regressive method in terms of power spectral density function of wind field. The bridge is represented by three-dimensional finite element model and the vehicle by a multi-rigid-body system connected by springs and dashpots. The detailed calculation formulas of unsteady aerodynamic forces on bridge and vehicle are derived. In addition, the form selection of wind barriers, which are applied as the windbreak measures of newly-built railways in northwest China, is studied based on the suggested evaluation index, and the suitable values about height and porosity rate of wind barriers are studied. By taking a multi-span simply-supported box-girder bridge as a case study, the dynamic response of the bridge and the running safety indices of the train traveling on the bridge with and without wind barriers are calculated. The limit values of train speed with respect to different wind velocities are proposed according to the allowance values in the design code.

The smart PFD with LRB for seismic protection of the horizontally curved bridge

  • Kataria, N.P.;Jangid, R.S.
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.691-708
    • /
    • 2016
  • Recently, number of smart material are investigated and widely used in civil construction and other industries. Present study investigates the application of smart semi-active piezoelectric friction damper (PFD) made with piezoelectric material for the seismic control of the horizontally curved bridge isolated with lead rubber bearing (LRB). The main aim of the study is to investigate the effectiveness of hybrid system and to find out the optimum parameters of PFD for seismic control of the curved bridge. The selected curved bridge is a continuous three-span concrete box girder supported on pier and rigid abutment. The PFD is located between the deck and abutments or piers in chord and radial directions. The bridge is excited with four different earthquake ground motions with all three components (i.e. two horizontal and a vertical) having different characteristics. It is observed that the use of semi-active PFD with LRB is quite effective in controlling the response of the curved bridge as compared with passive system. The incorporation of the smart damper requiring small amount of energy in addition with an isolation system can be used for effective control the curved bridge against the dynamic loading.

The Simulation and Experimental Study on the Bridge Response of AGT Bridge - Vehicle interaction System (AGT 시스템 교량-차량 상호작용에 의한 교량응답 시뮬레이션 및 실험)

  • Na, Sang-Ju;Kim, Ki-Bong;Song, Jae-Pil;Kim, Hyun-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.395-400
    • /
    • 2007
  • LRT(Light Railway Train), which is a intermediate system of train and bus, is arose for the solution of subway construction cost and the transportation capacity of bus. LRT was introduced in 1980's. About 30 local governments are plan to introduce LRT or constructing LRT, at present. AGT(Automated Guide-way Transit) system, which is a kind of LRT, is operated without driver. Rubber wheeled AGT system can reduce the noise and vibration compare to steel wheeled AGT, so it is estimated as ideal transportation system for urban area. And live loads at bridge are classified as the static load of vehicle and the dynamic wheel contact load which is occurred from the interaction of bridge and vehicle vibration, and the surface roughness. In the case of AGT system, the dynamic increment factor of bridge is greater than the normal train bridge and roadway bridge, because, the weight of AGT vehicle is more light that the train of truck. The exact method for dynamic increment factor is experiment. But this method is needed much money and time, moreover, this method cannot be adopted in design. Therefore, a simulation program for the interaction of AGT bridge, vehicle and surface roughness was developed, in this study. And the program was verified by experiment. As a result, the accuracy of the simulation program can be verified.

  • PDF