• Title/Summary/Keyword: bridge pier

Search Result 484, Processing Time 0.033 seconds

Identification of Failure Cause for Elastomeric Bearing in Bridge by Earthquakes (지진에 의한 교량의 탄성받침장치 손상 원인 규명)

  • Seo, Young-Deuk;Choi, Hyoung-Suk;Kim, In-Tae;Kim, Jung Han;Jeong, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.19-26
    • /
    • 2021
  • The seismic isolation system have been applied in order to protect the collapse of bridge by seismic load and the vertical load transmitted from the superstructure. However, the failure and damages of non-shrinkage mortar, isolator and wedge in total 12 bridge were reported by Pohang Earthquake. In this study, the damage mechanism and behavior characteristics of elastomeric bearing by an earthquake were evaluated to consider the seismic isolation system including non-shrinkage mortar and the seat concrete of pier. To discuss the effect of installed wedge and damage mode of elastomeric bearing, the compressive-shear tests were carried out. Also, the mechanical behaviors and damage mechanism for each component of elastomeric bearing were evaluated by using finite element analysis. From the test results, the cracks were created at boundary between non-shrinkage mortar and seismic isolator and the shear loads were rapidly increased after bump into wedge. The cause for damage mechanism of seismic isolation system was investigated by comparing stress distribution of anchor socket and non-shrinkage mortar depending on wedge during earthquake.

Seismic Fragility of I-Shape Curved Steel Girder Bridge using Machine Learning Method (머신러닝 기반 I형 곡선 거더 단경간 교량 지진 취약도 분석)

  • Juntai Jeon;Bu-Seog Ju;Ho-Young Son
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.899-907
    • /
    • 2022
  • Purpose: Although many studies on seismic fragility analysis of general bridges have been conducted using machine learning methods, studies on curved bridge structures are insignificant. Therefore, the purpose of this study is to analyze the seismic fragility of bridges with I-shaped curved girders based on the machine learning method considering the material property and geometric uncertainties. Method: Material properties and pier height were considered as uncertainty parameters. Parameters were sampled using the Latin hypercube technique and time history analysis was performed considering the seismic uncertainty. Machine learning data was created by applying artificial neural network and response surface analysis method to the original data. Finally, earthquake fragility analysis was performed using original data and learning data. Result: Parameters were sampled using the Latin hypercube technique, and a total of 160 time history analyzes were performed considering the uncertainty of the earthquake. The analysis result and the predicted value obtained through machine learning were compared, and the coefficient of determination was compared to compare the similarity between the two values. The coefficient of determination of the response surface method was 0.737, which was relatively similar to the observed value. The seismic fragility curve also showed that the predicted value through the response surface method was similar to the observed value. Conclusion: In this study, when the observed value through the finite element analysis and the predicted value through the machine learning method were compared, it was found that the response surface method predicted a result similar to the observed value. However, both machine learning methods were found to underestimate the observed values.

Flow Characteristics and Riverbed Change Simulation on Bridge-intensive Section (교량밀집 구간의 흐름특성과 하상변동 모의)

  • Cho, Hong Je;Jeon, Woo Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6B
    • /
    • pp.589-598
    • /
    • 2010
  • When the hydraulic structures, such as bridge and weir, are consecutively installed to a short section of a river with complicated cross section, analyzing the flow characteristics and the riverbed change modality of the river is very important. In the 250 m section of the Taehwa river near the Samho-bridge, which passes through Ulsan city, three bridges has been installed, and the tributary water is flowing into both up and downstream of the section. Due to these factors, when the flood occurs, the cross section of the river changes vastly by the water level change and scour. Even so, due to the fact that the Samho-bridge divides the section into two parts, the national river and the regional river, each part is being analyzed separately by the onedimensional model. In this study, the flow characteristics due to the bridge concentration and the tributary water inflow were jointly analyzed for both up and downstream by using the one-dimensional HEC-RAS model and the two-dimensional SMS model, such as RMA2. The riverbed change modality of the section was also investigated by using the SED2D model. The results showed that the water level difference between the HEC-RAS and RMA2 was 0.87 m when applied to the three consecutive bridges. The riverbed change simulation using SED2D showed that the maximum scour was 0.231 m and it occurred at the Samho-bridge, which located in the middle and has short pier distance. In conclusion, when planning the river maintenance for the regions with concentrated bridges or the sections with severe changes in cross-section and flow, estimating the flood elevation by two-dimensional model and establishing countermeasures for the scouring of the bridge are required. In addition, an integrated analysis on both the national river and the regional river is necessary.

An Aesthetic Design Approach for the Landscape of Aqueduct Bridges (수로교 경관 개선을 위한 미학적 설계법)

  • Jeon, Geon Yeong;Kim, Namhee;Huh, Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.355-367
    • /
    • 2012
  • Many of old aqueduct bridges located in rural areas are in need of repair and redesign. They still occupy some portion of countryside landscaping. However, most of them were designed to fulfill their basic functions of carrying waters, which has not contributed to the landscape positively. Moreover, it is not rational to treat each design case of aqueduct bridges individually because they are relatively small in size and arranged continuously over a long path. Therefore, it is better to provide a design guideline to repair or to redesign old aqueduct bridges as a whole considering both structural safety and landscape. The main objective is to develop a framework to repair and redesign of old aqueduct bridges for safety improvement and better landscape. Specifically this paper will address the development of possible design alternatives for repair and redesign The development of design alternatives for redesign will follow general principle of bridge aesthetics and be represented according to structural system, flume shape, pier height, pier shape in terms of design parameters while minor repair includes paintings and other ornamentations. And the developed design alternatives will be reviewed with its landscape as a background to check the visual compatibility within the community context. It is expected that the proposed guideline will be utilized to develop a maintenance plan to revitalize old aqueduct bridges to improve overall landscape of rural areas.

Seismic Fragility of Bridge Considering Foundation and Soil Structure Interaction (교량기초 종류 및 지반-구조물 상호작용을 고려한 지진취약도 분석)

  • Kim, Sun-Jae;An, Hyo-Joon;Song, Ki-il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.129-137
    • /
    • 2020
  • In performing the structural analysis, the foundation is considered to be a fixed end as a plastic hinge model. In this study, the displacements of the foundation, pier, and shoe were compared when the foundation modeled as a fixed end, a shallow foundation constructed on bedrock of 2m depth, and a pile foundation constructed in the 10m to 20m depth of bedrock. The shear force was also compared, and the probability of damage was calculated and compared for the critical condition. When calculated as a fixed end, the displacement of the foundation converged to 0mm, but the shallow foundation built on the bedrock with a depth of 2m caused relatively displacement, and the pile foundation constructed to contact the bedrock with a depth of 18m caused a larger displacement. In addition, it was analyzed that the displacement of the foundation, which is the lower structure, affects the displacement of the super structure, but the difference in shear force applied to the foundation was insignificant in the three cases. There was no difference between the shallow foundation and the pile foundation in the influence on the displacement of the top of the pier, but there was a big difference from the analysis assuming as a fixed end.

Evaluation of P-M Interaction Curve for Circular Concrete-Filled Tube (CFT) Column (원형 콘크리트 충전 강관(CFT) 기둥의 P-M 상관 곡선 평가)

  • Moon, Jiho;Park, Keum-Sung;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.355-365
    • /
    • 2014
  • Concrete-filled tubes (CFTs) have been used in civil engineering practices as a column of buildings and a bridge pier. CFTs have several advantages over the conventional reinforced concrete columns, such as rapid construction, enhanced buckling resistance, and inherited confinement effect. However, CFT component have not been widely used in civil engineering practice, since the design provisions among codes significantly vary each other. It leads to conservative design of CFT component. In this study, the design provisions of AISC and EC4 for CFT component were examined, based on the extensive test results conducted by previous researchers and finite element analysis results obtained in this study. Especially, the focus was made on the validation of P-M interaction curves proposed by AISC and EC4. From the results, it was found that the current design codes considerably underestimated the strength of CFT component under general combined axial load and bending. Finally, the modified P-M interaction curve was proposed and successfully verified.

A Study on the Strength Rating of Continuous Composite Plate Girder Bridges by ALFD (ALFD방법에 의한 연속합성판형교의 강도평가에 대한 연구)

  • Han, Sang Cheol;Chung, Kyung Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.213-222
    • /
    • 1999
  • Elastic-plastic methods have been used for the better prediction of the actual behavior of continuous-composite plate girder bridges in the overload and maximum load analysis. The structural evaluation using ALFD(Alternate Load Factor Design) uses the elastic-plastic analysis. The plastic rotations that remain after the load is removed can be occurred by the yielding locations of the maximum moment section. This situation can occur due to the residual stresses even if the moment is below the theoretical yield moment. The local yielding causes positive automoments that assure elastic behavior under subsequent overloads. In this study, the automoments at the piers occurred due to the unit plastic rotations and other locations were calculated by the conjugate-beam method and three-moment equation, using the nine design span with progressively smaller pier sections. The automoments were determined by the developed computer programs in this study in which the moments and plastic rotations from the continuity and moment-inelastic rotation relationships must be equal. And also the ratings of 3-span continuous composite plate girder bridges with non-compact section were carried out according to the Korean Highway Bridge Specification.

  • PDF

Study on the Methods for 2D Numerical Modeling of the Bridge Pier (교각의 차원 수치모의하는 방법에 2차원 관한 연구)

  • Kim, Tae-Beom;Choi, Byung-Woong;Kang, Hyeong-Sik;Choi, Sung-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1737-1741
    • /
    • 2008
  • 하천 개수나 치수를 위한 기초 연구의 일환으로 수치모형을 이용한 검증 및 예측 과정이 요구되어 왔고, 고전적인 수치모의 방법으로 결과 산출이 용이한 1차원 모형을 적용시켜 왔다. 1차원 모형의 경우 모의영역을 쉽게 넓힐 수 있고, 입력 자료가 간단하다는 장점이 있지만, 수직적이고 수평적인 흐름특성 변화 및 난류 구조를 보이는 3차원적인 자연하천 흐름을 종방향의 1차원적인 모의 결과를 이용하여 평가한다는 점에서 비현실적이다. 하천을 가로질러 교각이나 보와 같은 구조물이 위치하고 있거나, 좌우 비대칭적인 형상의 수로를 모의할 경우 흐름특성의 공간적인 분포는 단순한 단면 평균적인 개념으로는 설명되기 힘들다. 최근에야 비로소 수공학 관련 실무자들에 의해서 최소한 2차원 수치모형을 기본적인 평가법으로 도입해야 한다는 분위기가 감지되고 있으며, 일반적으로 한강과 같은 대하천을 모의할 경우, 대다수의 실무자들과 연구자들이 축척을 문제 삼아 수로 내부에 위치한 교각을 생략하여 2차원 모의를 수행하기도 한다. 따라서 본 연구에서는 수로 내부에 위치한 교각을 2차원 모의하는 방법에 대한 비교 평가를 수행하고자 한다. 동일한 격자를 이용하여 교각을 고려하지 않았을 경우와 교각 형상을 모의 영역에서 삭제하여 경계처리를 하였을 경우, 마지막으로 교각이 위치하고 있는 영역에 항력을 적용하였을 경우에 대해서 비교 평가한다. 이를 위하여 2차원 천수방정식을 흐름방정식으로 하는 유한요소모형을 구축하였으며, 모형의 검증을 위해 교각이 수로에 위치할 경우에 대한 실내 실험 자료와 비교한다. 또한 검증된 모형을 이용하여 교각이 포함된 한강의 일부 구간을 선정하여, 교각 모의 방법에 대한 비교 평가를 수행한다. 본 연구에서 구축된 자료 및 제시된 수치모형은 하천복원, 치수관리 측면에서 매우 유용하게 사용될 것으로 기대된다.

  • PDF

An Experimental Study to Evaluate the Subsidence Stability of Riprap Protection without Filters (필터 없는 사석보호공의 유사이탈로 인한 침하 안정성 평가를 위한 실험 연구)

  • Ji, Un;Yeo, Woon-Kwang;Lee, Won-Min
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.4
    • /
    • pp.445-454
    • /
    • 2008
  • Many countermeasures for local scour at bridge piers constructed on the river and sea have been developed and researched to protect piers against local scour. The most commonly employed method is riprap protection, which is sometimes required the filter installation between riprap and base layers. However, the construction of stone filters are really hard to perform in the field, require the high cost, or sometimes are impossible. The experimental modeling is conducted to analyze the riprap failure modes and the stability of riprap protection without filters based on the different approach velocity and riprap layer thickness conditions. Also, the stability index to evaluate the performance of riprap protection is developed using the experimental results. The cover and thickness of the riprap layer play a very important role in the stability and thicker riprap layers can prevent a total disintegration of the riprap layer effectively, especially due to winnowing failure.

A Study of Seismic Resistant Design for Base-Isolated Bridges(I) (지진에 대비한 기초분리 교량의 설계법에 관한 연구(I))

  • Lee, Sang Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.625-635
    • /
    • 1997
  • The base isolation technique and its benefits in reducing the transmitted earthquake energy into a structure have gained increasing recognition during the last two decades. Unfortunately, the current available design procedures, especially for base-isolated bridges, seem inadequate and too restrictive. As a result, practical design procedure still relies upon a series of deterministic time history analyses. In this study, the evaluation of the possibility of the normal mode method to predict the nonlinear seismic responses of base isolated bridges has been performed. The applicability has been examined through the numerical approach with isolator's elastic or plastic states of the base isolated bridges. Numerical results show that the 1st. mode period and the various responses are varied with the state but are conversed. And, the result show that the normal mode method is applicable to predict the seismic responses and to design the babe isolated bridge. Various analysis method to bridges with bilinearized hysteresis isolator and various pier heights are evalulated.

  • PDF