• Title/Summary/Keyword: bridge performance evaluation

Search Result 402, Processing Time 0.025 seconds

Experimental Study on Ultimate Tensile Failure Properties of Laminated Rubber Bearings (적층고무받침의 극한인장파괴 특성에 관한 실험적 연구)

  • Oh, Ju;Jung, Hie-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.303-309
    • /
    • 2011
  • Laminated rubber bearing is the most commonly used device for seismic base isolation of bridge structures. It is important to know performance and behavior characteristics of the laminated rubber bearings. The main evaluation factors of the rubber bearing are classified as compressive, shear and tensile behavior characteristics. The reference data of compressive and shear characteristics are rich, but the reference data of tensile characteristics is scarce. In this study, tensile test results of the rubber bearing with variation of shape factor and shear deformation are investigated for mechanical property. When tensile deformation in normal condition is increasing, tensile cycle behavior curve becomes non-linear and tensile breaking point is 300%. On the other hand, tensile breaking point is shear deformation condition is about 40%. Furthermore, when shape factor is lower, tensile breaking point is decrease. This results mean that tensile breaking point is decreased in triaxial tensile deformation because of cracks caused by internal void of the rubber bearings. This experimental data can be used as the reference data of tensile characteristics for designing seismic isolation of structures.

Optimal sensor placement under uncertainties using a nondirective movement glowworm swarm optimization algorithm

  • Zhou, Guang-Dong;Yi, Ting-Hua;Zhang, Huan;Li, Hong-Nan
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.243-262
    • /
    • 2015
  • Optimal sensor placement (OSP) is a critical issue in construction and implementation of a sophisticated structural health monitoring (SHM) system. The uncertainties in the identified structural parameters based on the measured data may dramatically reduce the reliability of the condition evaluation results. In this paper, the information entropy, which provides an uncertainty metric for the identified structural parameters, is adopted as the performance measure for a sensor configuration, and the OSP problem is formulated as the multi-objective optimization problem of extracting the Pareto optimal sensor configurations that simultaneously minimize the appropriately defined information entropy indices. The nondirective movement glowworm swarm optimization (NMGSO) algorithm (based on the basic glowworm swarm optimization (GSO) algorithm) is proposed for identifying the effective Pareto optimal sensor configurations. The one-dimensional binary coding system is introduced to code the glowworms instead of the real vector coding method. The Hamming distance is employed to describe the divergence of different glowworms. The luciferin level of the glowworm is defined as a function of the rank value (RV) and the crowding distance (CD), which are deduced by non-dominated sorting. In addition, nondirective movement is developed to relocate the glowworms. A numerical simulation of a long-span suspension bridge is performed to demonstrate the effectiveness of the NMGSO algorithm. The results indicate that the NMGSO algorithm is capable of capturing the Pareto optimal sensor configurations with high accuracy and efficiency.

The Evaluation of Structural Behavior of Hollowed PPC Girder Using Lightweight Aggregate Concrete (경량골재 콘크리트를 활용한 중공 PPC 거더의 구조거동 평가)

  • Lho, Byeong Cheol;Lee, Kyung Su;Kim, Ik Sang;Cha, Kwang Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.75-81
    • /
    • 2011
  • Recently prestressed concrete bridges are generally used instead of reinforced concrete. PSC is more durable than RC because it can reduce crack problems, reinforcement corrosion, leakage and carbonation etc. And also PSC is more effective because there is no crack in tension area, and the entire concrete section is considered in section analysis. And it can reduce section size because vertical component by prestressing force can reduce the shear force. However, using high strength concrete can increase the self weight of bridge because of it's higher density. So the hollowed PPC girder with light weight aggregate can be a alternative. In this study the hollowed PPC girder with light weight aggregate is designed and the performance of hollowed PPC girder is evaluated by experimental tests as well as numerical analysis. As a result, The hollowed PPC girder of light aggregate behaved fully elastically under service load of 110kN, and the plastic behavior was showed after elastic behavior through experimental test, and it can be also estimated by numerical analysis.

The Consideration of the Necessity of Seismic Retrofitting for Existing High Speed Rail Bridge in Accordance with Design Guidelines Improvements (설계기준 개선에 따른 기존 고속철도 교량 내진보강 필요성 고찰)

  • Kim, Do-Kyoun;Jang, Han-Teak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.445-453
    • /
    • 2013
  • This paper was calculated the earthquake load using ELFP(Equivalent Lateral Force Procedure) and RSA(Response Spectrum Analysis) for PSC Box Girder representative bridges by the Phase of KTX designed by ELFP and verified the difference of these analyses. It have been modeled 3 dimensional FE model of 5 bridges using a commercial FEM program for the comparison of these analyses using a commercial FEM program and were compared the earthquake load. It has been to confirm the increase of the difference ELFP of RSA calculated to seismic ground acceleration according to the ground condition and natural period. It is mean that the necessity of seismic reinforcement due to the application of a larger of earthquake load than designed earthquake load form the seismic performance evaluation result according to the difference of calculated earthquake loads.

Performance Evaluation of Stress Absorbing Membrane Interlayer Using Epoxy Asphalt Binder (에폭시 아스팔트 바인더를 이용한 응력흡수층의 성능평가)

  • Jo, Shin Haeng;Lee, Bong Lim;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.1043-1051
    • /
    • 2017
  • Asphalt overlay on deteriorated concrete pavement has a problem of early damage due to reflective cracking. There is a need for a new method capable of reducing reflection cracking and ensuring the durability of pavement. The purpose of this study was to obtain durability of asphalt overlay with stress absorbing membrane interlayer (SAMI) using epoxy asphalt binder. The tensile performance, durability, water resistance and bonding performance of Epoxy-SAMI were evaluated by various tests. As a result of tests, Epoxy-SAMI meets the quality standard of the bridge waterproofing material. The repeated direct tensile test was carried out to investigate the effect of reflective cracking reduction. When the Epoxy-SAMI was applied, it had 1.2~1.56 times higher reflective cracking resistance than PSMA asphalt concrete with the thickness of 10cm even if the section thickness decreased. 4-point bending beam test results showed the number of fatigue failures increased 7.5 times when Epoxy-SAMI was applied. The Epoxy-SAMI was found to be effective in improving the durability of the asphalt pavement overlay because it serves to prevent reflective cracking, increase lifespan, and function as a waterproof layer.

Improvement and Seismic Performance Evaluation of RC Exterior Beam-Column Joints Using Recycled Coarse Aggregate with Hybrid Fiber (순환굵은골재 치환과 하이브리드섬유 혼입에 따른 철근콘크리트 외부 보-기둥 접합부의 내진성능 평가 및 개선)

  • Ha, Jae-Hoon;Ha, Gee-Joo;Shin, Jong-Hak
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.160-169
    • /
    • 2015
  • In this study, experimental research was carried out to improve the seismic performance of reinforced concrete exterior beam-column joint regions using replacing recycled coarse aggregate with hybrid fiber (steel fiber+PVA fiber) in existing reinforced concrete building. Therefore it was constructed and tested seven specimens retrofitting the beam-column joint regions using such retrofitting materials. Specimens, designed by retrofitting the beam-column joint regions of reinforced concrete building, were showed the stable failure mode and increase of load-carrying capacity due to the effect of crack control at the times of initial loading and bridge of retrofitting hybrid fiber during testing. Specimens BCJGPSR series, designed by the retrofitting of replacing recycled coarse aggregate with hybrid fiber in reinforecd beam-column joint regions were increased its maximum load carrying capacity by 1.01~1.04 times and its energy dissipation capacity by 1.06~1.29 times in comparison with standard specimen BCJS. Also, specimen $BCJGPSR_1$ were increased its energy dissipation capacity by 1.33~1.65 times in comparison with specimens BCJS, BCJP and BCJGPR series for a displacement ductility of 9.

Experimental Evaluation of Weathering Performance for Duplex Coating Systems Combining Thermal Spraying Metals and Painting (금속용사와 도장의 복합피복방식법에 대한 실험적 내후성능평가)

  • Kim, In Tae;Jun, Je Hyong;Cha, Ki Hyuk;Jeong, Young Soo;Ahn, Jin Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.5
    • /
    • pp.373-382
    • /
    • 2016
  • Painting or thermally sprayed metal coating is often used in corrosion protection of steel structures. In recently, duplex coating system which combines thermally sprayed metals with paint is selected as a new generic type of coatings on steel structures under the highly corrosive environments. In this study, the structural steel specimens were surface treated, thermally sprayed with zinc, zinc-15%aluminum alloy, aluminum and aluminum-5%magnesium alloy, and finally sealing or painted with acrylic urethane. And as a reference specimens, steel specimens were painted with acrylic urethane after surface treatment. Circular defects with 1.0, 3.0 and 5.0 mm in diameters and line defect with 2.0 mm width, which reach the steel substrate were created on all specimens. The specimens were exposed into an environmental testing chamber controlled by the ISO 20340, which is a laboratory cyclic accelerated exposure test condition of spraying/UV/low temperature, for up to 175 days. Based on the corrosion tests, corrosion deterioration from the initial defects were evaluated and weathering performance of the specimens are compared.

Evaluation of Isolation Mechanism of Teflon or Steel Slag-Type Seismic Foundation Isolation Systems (테프론 또는 제강슬래그를 활용한 기초형 지진격리장치의 면진 메카니즘 평가)

  • Son, Su Won;Kang, In-Gu;Pouyan, Bagheri;Kim, Jin Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.1
    • /
    • pp.5-16
    • /
    • 2018
  • In this study, seismic performance of geotechnical seismic isolation system capable of primary seismic isolation in the ground was evaluated. 1-G shaking table test was used to assess the performance of Teflon or steel slag as geotechnical seismic isolation systems installed beneath superstructure foundation. Response acceleration and response spectra were analyzed considering different input motions. The results were compared with those of fixed foundation structure without seismic isolation system. The steel slag-type seismic isolation system showed significant reduction in acceleration. The teflon-type seismic isolation system did not show significant effects on acceleration reduction in low-to-moderate seismicity condition, but it did show better effects in case of strong seismic condition. As input motion was transferred to the upper mass, the response spectrum of the fixed foundation structure was amplified in the short period range. In contrast, the response spectrum of the structure with seismic isolation using teflon or steel slag amplified in the long period range. It is found that the change of periodicity and the friction characteristics between isolation materials and foundations affected acceleration reduction.

Seismic Fragility Analysis for Probabilistic Performance Evaluation of PSC Box Girder Bridges (확률론적 내진성능평가를 위한 PSC Box 거더교의 지진취약도 해석)

  • Song, Jong-Keol;Jin, He-Shou;Lee, Tae-Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2A
    • /
    • pp.119-130
    • /
    • 2009
  • Seismic fragility curves of a structure represent the probability of exceeding the prescribed structural damage state for a given various levels of ground motion intensity such as peak ground acceleration (PGA), spectral acceleration ($S_a$) and spectral displacement ($S_d$). So those are very essential to evaluate the structural seismic performance and seismic risk. The purpose of this paper is to develop seismic fragility curves for PSC box girder bridges. In order to construct numerical fragility curve of bridge structure using nonlinear time history analysis, a set of ground motions corresponding to design spectrum are artificially generated. Assuming a lognormal distribution, the fragility curve is estimated by using the methodology proposed by Shinozuka et al. PGA is simple and generally used parameter in fragility curve as ground motion intensity. However, the PGA has not good relationship with the inelastic structural behavior. So, $S_a$ and $S_d$ with more direct relationship for structural damage are used in fragility analysis as more useful intensity measures instead of PGA. The numerical fragility curves based on nonlinear time history analysis are compared with those obtained from simple method suggested in HAZUS program.

The State Attribute and Grade Influence Structure for the RC Bridge Deck Slabs by Information Entropy (정보 엔트로피에 의한 RC 교량 상판의 상태속성 및 등급 영향 구조 분석)

  • Hwang, Jin-Ha;Park, Jong-Hoi;An, Seoung-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.61-71
    • /
    • 2010
  • The attributes related to the health condition of RC deck slabs are analyzed to help us identify and rate the safety level of the bridges in this study. According to the related reports the state assessment for the outward aspects of bridges is the important and critical part for rating the overall structural safety. In this respect, the careful identification for the various state attributes make the field inspection and structural diagnosis very effective. This study analyzes the influence of the state attributes on evaluation classes and the relationship of them by the inductive reasoning, which raise the understanding and performance for evaluation work, and support the logical approach for the state assessment. ID3 algorithm applied to the case set which is constructed from the field reports indicates the main attributes and the precedence governing the assessment, and derives the decision hierarchy for the state assessment.