• Title/Summary/Keyword: bridge monitoring

Search Result 695, Processing Time 0.027 seconds

Damage identification in a wrought iron railway bridge using the inverse analysis of the static stress response under rail traffic loading

  • Sidali Iglouli;Nadir Boumechra;Karim Hamdaoui
    • Smart Structures and Systems
    • /
    • v.32 no.3
    • /
    • pp.153-166
    • /
    • 2023
  • Health monitoring of civil infrastructures, in particular, old bridges that are still in service, has become more than necessary, given the risk that a possible degradation or failure of these infrastructures can induce on the safety of users in addition to the resulting commercial and economic impact. Bridge integrity assessment has attracted significant research efforts over the past forty years with the aim of developing new damage identification methods applicable to real structures. The bridge of Ouled Mimoun (Tlemcen, Algeria) is one of the oldest railway structure in the country. It was built in 1889. This bridge, which is too low with respect to the level of the road, has suffered multiple shocks from various machines that caused considerable damage to its central part. The present work aims to analyze the stability of this bridge by identifying damages and evaluating the damage rate in different parts of the structure on the basis of a finite element model. The applied method is based on an inverse analysis of the normal stress responses that were calculated from the corresponding recorded strains, during the passage of a real train, by means of a set of strain gauges placed on certain elements of the bridge. The results obtained from the inverse analysis made it possible to successfully locate areas that were really damaged and to estimate the damage rate. These results were also used to detect an excessive rigidity in certain elements due to the presence of plates, which were neglected in the numerical reference model. In the case of the continuous bridge monitoring, this developed method will be a very powerful tool as a smart health monitoring system, allowing engineers to take in time decisions in the event of bridge damage.

A Study on development of the real-time monitoring program about the bridge using ubiquitous technology (유비쿼터스 기술을 이용한 교량의 상시 모니터링 프로그램 개발에 관한 연구)

  • Jo, Byung-Wan;Kim, Do-Keun;Park, Jung-Hoon;Kim, Heoun
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.493-496
    • /
    • 2008
  • In case of collapsed or damaged Servicing infrastructure, such as a bridge, tunnel, dam, a severe loss may have to be incurred. Therefore, infrastructure should not be designed and constructed properly but also maintained impeccably. This paper tried to build an intelligent bridge maintenance system that warn the people on bridge and control traffic in the danger. For the purpose, diverse wireless sensor fields are composed and structure's database is established. Also the paper develops a bridge maintenance program. Developed programme is regarded as a good tool to provide the utmost bridge management scenario, which is exactly correspondent with the demand and restraint by improving the present bridge management strategy.

  • PDF

Damage prevention and aerodynamics of cable-stayed bridges in heavy snowstorms: A case study

  • Mladen, Bulic;Mehmed, Causevic
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.81-88
    • /
    • 2023
  • This paper begins by analyzing cable vibrations due to external excitations and their effects on the overall dynamic behavior of cable-stayed bridges. It is concluded that if the natural frequency of a cable approaches any natural frequency of the bridge, the cable loses its rigidity and functionality. The results of this analysis explain the phenomenon that occurred on the Dubrovnik Bridge in Croatia during a storm and measures for its retrofit. A field test was conducted before the bridge was opened to traffic. It was concluded: "The Bridge excited unpleasant transverse superstructure vibration with the frequency of approximately 0.470 Hz. Hence, it seems possible that a pair of stays vibrating in phase may excite deck vibrations". Soon after this Bridge opened, a storm dumped heavy damp snow in the area, causing the six longest cable stay pairs of the main span to undergo large-amplitude vibrations, and the superstructure underwent considerable displacements in combined torsion-sway and bending modes. This necessitated rehabilitation measures for the Bridge including devices to suppress the large-amplitude vibrations of cables. The rehabilitation and monitoring of the Bridge are also presented here.

Indirect structural health monitoring of a simplified laboratory-scale bridge model

  • Cerda, Fernando;Chen, Siheng;Bielak, Jacobo;Garrett, James H.;Rizzo, Piervincenzo;Kovacevic, Jelena
    • Smart Structures and Systems
    • /
    • v.13 no.5
    • /
    • pp.849-868
    • /
    • 2014
  • An indirect approach is explored for structural health bridge monitoring allowing for wide, yet cost-effective, bridge stock coverage. The detection capability of the approach is tested in a laboratory setting for three different reversible proxy types of damage scenarios: changes in the support conditions (rotational restraint), additional damping, and an added mass at the midspan. A set of frequency features is used in conjunction with a support vector machine classifier on data measured from a passing vehicle at the wheel and suspension levels, and directly from the bridge structure for comparison. For each type of damage, four levels of severity were explored. The results show that for each damage type, the classification accuracy based on data measured from the passing vehicle is, on average, as good as or better than the classification accuracy based on data measured from the bridge. Classification accuracy showed a steady trend for low (1-1.75 m/s) and high vehicle speeds (2-2.75 m/s), with a decrease of about 7% for the latter. These results show promise towards a highly mobile structural health bridge monitoring system for wide and cost-effective bridge stock coverage.

Long-term monitoring of super-long stay cables on a cable-stayed bridge

  • Shen, Xiang;Ma, Ru-jin;Ge, Chun-xi;Hu, Xiao-hong
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.357-368
    • /
    • 2018
  • For a long cable-stayed bridge, stay cables are its most important load-carrying components. In this paper, long-term monitoring of super-long stay cables of Sutong Bridge is introduced. A comprehensive data analysis procedure is presented, in which time domain and frequency domain based analyses are carried out. In time domain, the vibration data of several long stay cables are firstly analyzed and the standard deviation of the acceleration of stay cables, and its variation with time are obtained, as well as the relationship between in-plane vibration and out-plane vibration. Meanwhile, some vibrations such as wind and rain induced vibration are detected. Through frequency domain analysis, the basic frequencies of the stay cables are identified. Furthermore, the axial forces and their statistical parameters are acquired. To investigate the vibration deflection, an FFT-based decomposition method is used to get the modal deflection. In the end, the relationship between the vibration amplitude of stay cables and the wind speed is investigated based on correlation analysis. Through the adopted procedure, some structural parameters of the stay cables have been derived, which can be used for evaluating the component performance and corresponding management of stay cables.

Development of New Linux Embedded Intelligent Controller and Remote Monitoring System for Bridge Diagnosis (교량진단을 위한 새로운 Linux 실장 지능형 제어기 및 원격 모니터링 시스템 개발)

  • 박세현;송근영
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.526-531
    • /
    • 2003
  • In this paper, we implement embedded Linux intelligent controller and remote monitoring system for Bridge Diagnosis. Embedded controller as the hard core is consisted of 32 bit CPU and is designed to have processing of real time monitoring and FFT for Bridge Diagnosis. The prototype monitoring system can operate with world wide web in GUI environment by Java. Detailed design and functional analysis for monitoring system are performed by systems approach.

An Overview of Information Processing Techniques for Structural Health Monitoring of Bridges (교량 건전성 모니터링을 위한 정보처리기법)

  • Lee, Jong-Jae;Park, Young-Soo;Yun, Chung-Bang;Koo, Ki-Young;Yi, Jin-Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.6
    • /
    • pp.615-632
    • /
    • 2008
  • The bridge health monitoring has become an important research topic in conjunction with damage assessment and safety evaluation of structures owing to the improvement of structural modeling techniques incorporating response measurements and the advancements in signal analysis and information processing capabilities. The bridge monitoring systems are generally composed of hardwares such as sensors, data acquisition equipment, data transmission systems, etc, and softwares such as signal processing, damage assessment, display and management, etc. In this paper, the research and development(R&D) activities on the information processing for structural health monitoring of bridges are reviewed. After a brief introduction to the process of bridge health monitoring, various information processing techniques including various signal processing and damage detection algorithms are introduced in detail. Several challenges addressing critical issues in the current bridge health monitoring system and future R&D activities are discussed.

An integrated approach for structural health monitoring using an in-house built fiber optic system and non-parametric data analysis

  • Malekzadeh, Masoud;Gul, Mustafa;Kwon, Il-Bum;Catbas, Necati
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.917-942
    • /
    • 2014
  • Multivariate statistics based damage detection algorithms employed in conjunction with novel sensing technologies are attracting more attention for long term Structural Health Monitoring of civil infrastructure. In this study, two practical data driven methods are investigated utilizing strain data captured from a 4-span bridge model by Fiber Bragg Grating (FBG) sensors as part of a bridge health monitoring study. The most common and critical bridge damage scenarios were simulated on the representative bridge model equipped with FBG sensors. A high speed FBG interrogator system is developed by the authors to collect the strain responses under moving vehicle loads using FBG sensors. Two data driven methods, Moving Principal Component Analysis (MPCA) and Moving Cross Correlation Analysis (MCCA), are coded and implemented to handle and process the large amount of data. The efficiency of the SHM system with FBG sensors, MPCA and MCCA methods for detecting and localizing damage is explored with several experiments. Based on the findings presented in this paper, the MPCA and MCCA coupled with FBG sensors can be deemed to deliver promising results to detect both local and global damage implemented on the bridge structure.

Vibration-Monitoring of a Real Bridge by Using a $Moir\'{e}$-Fringe-Based Fiber Optic Accelerometer

  • Kim, Dae-Hyun;Lee, Jong-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.556-562
    • /
    • 2007
  • This paper presents the use of a novel fiber optic accelerometer system to monitor ambient vibration (both wind-induced one and vehicle-induced) of a real bridge structure. This sensor system integrates the $Moir\'{e}$ fringe phenomenon with fiber optics to achieve accurate and reliable measurements. A low-cost signal processing unit implements unique algorithms to further enhance the resolution and increase the dynamic bandwidth of the sensors. The fiber optic accelerometer has two major benefits in using this fiber optic accelerometer system for monitoring civil engineering structures. One is its immunity to electromagnetic (EM) interference making it suitable for difficult applications in such environments involving strong EM fields, electrical spark-induced explosion risks, and cabling problems, prohibiting the use of conventional electromagnetic accelerometers. The other is its ability to measure both low- and high-amplitude vibrations with a constantly high resolution without pre-setting a gain level, as usually required in a conventional accelerometer. The second benefit makes the sensor system particularly useful for real-time measurement of both ambient vibration (that is often used for structural health monitoring) and strong motion such as earthquake. Especially, the semi-strong motion and the small ambient one are successfully simulated and measured by using the new fiber optic accelerometer in the experiment of the structural health monitoring of a real bridge.

Condition monitoring and rating of bridge components in a rail or road network by using SHM systems within SRP

  • Aflatooni, Mehran;Chan, Tommy H.T;Thambiratnam, David P.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.199-211
    • /
    • 2015
  • The safety and performance of bridges could be monitored and evaluated by Structural Health Monitoring (SHM) systems. These systems try to identify and locate the damages in a structure and estimate their severities. Current SHM systems are applied to a single bridge, and they have not been used to monitor the structural condition of a network of bridges. This paper propose a new method which will be used in Synthetic Rating Procedures (SRP) developed by the authors of this paper and utilizes SHM systems for monitoring and evaluating the condition of a network of bridges. Synthetic rating procedures are used to assess the condition of a network of bridges and identify their ratings. As an additional part of the SRP, the method proposed in this paper can continuously monitor the behaviour of a network of bridges and therefore it can assist to prevent the sudden collapses of bridges or the disruptions to their serviceability. The method could be an important part of a bridge management system (BMS) for managers and engineers who work on condition assessment of a network of bridges.