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An Overview of Information Processing Techniques for Structural Health
Monitoring of Bridges
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Abstract

The bridge health monitoring has become an important research topic in conjunction with damage assessment and safety
evaluation of structures owing to the improvement of structural modeling techniques incorporating response measurements and the
advancements in signal analysis and information processing capabilities. The bridge monitoring systems are generally composed of
hardwares such as sensors, data acquisition equipment, data transmission systems, etc, and softwares such as signal processing,
damage assessment, display and management, etc. In this paper, the research and development(R&D) activities on the information
processing for structural health monitoring of bridges are reviewed. After a brief introduction to the process of bridge health
monitoring, various information processing techniques including various signal processing and damage detection algorithms are

introduced in detail. Several challenges addressing critical issues in the current bridge health monitoring system and future R&D
activities are discussed.
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1. Introduction

Bridge structures are exposed to various external
loads such as traffic, earthquakes, gusts, and wave
loads during their lifetime. The structures may get
deteriorated and degraded with time in unexpected

ways, which may lead to structural failures causing

costly repair and/or heavy loss of human lives.
Consequently, structural health monitoring(SHM) has
become an important research topic in conjunction with
damage assessment and safety evaluation of structures.
The use of system identification approaches for damage
detection has been expanded in recent years. This is due

to the improvement of structural modeling techniques
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incorporating response measurements and the advan-
cements in signal analysis and information processing
capabilities.

Since the early 1990’'s developments and applications
of bridge monitoring systems have become active in
Korea. The number of the deteriorated infra-structures,
mostly built in the rapidly industrialized period of
1970’s, has increased rapidly. Also the recognition of
the infrastructure system's potential devastating
disruption of due to natural and man-made hazards
has increased as well. Particularly after the tragic
collapse of the Sungsu Bridge crossing the Han River
in Seoul in 1994, the Korean governmental authorities
have issued more stringent requirements on bridge
management and operational programs. The programs
include systematic visual inspection, instrumentation,
load capacity tests, and field measurements for design
and construction verification and long-term performance
monitoring and assessment.

Recently a number of long-span bridges were built
in Korea and most of those bridges are equipped with
a large amount of sensors and modern monitoring
systems. The SHM systems are generally composed of
two major parts: (1) hardwares such as sensors, data
acquisition equipment, data transmission systems, etc,
and (2) softwares such as signal processing, damage
assessment, information display and management, etc.
The first part of the SHM system involves observation
of the structure using periodically sampled response
measurements from arrays of sensors, storage of the
measured data, and transmission of data to the control
center. In the second part, extraction of the damage-
sensitive features from the measurements is performed
using various signal/information processing techniques,
and then damage assessment algorithms are applied to
determine the current state of the structural integrity.
Since the number of bridges with monitoring system
has increased, it is still more necessary to develop an
effective damage assessment algorithm based on the
monitoring data.

Damage detection methods for SHM can be classified
as global or local methods based on the type of

information to be used. Local methods concentrate on
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a part of the structure and are based on various
nondestructive tests such as: acoustics emission,
hardness, magnetic fields, radiography, X-rays, and
piezoelectric sensors. Global methods can be classified
as dynamic monitoring and static mo;litoring methods
based on the kind of the measured data. The dynamic
monitoring method, which has been used broadly for
the damage detection, is based on vibration measurements.
Vibration-based damage detection relies on the fact
that a local stiffness change affects the global dynamic
characteristics of the structure. Various algorithms
and techniques for damage estimation and SHM of
structures have been presented by many researchers.
Recently, several attempts have been executed to
apply the developed techniques to real structures.
However, the application of those techniques to large
civil structures such as bridges is difficult and contains
many problems to be resolved.

In this paper, the research and development(R&D)
activities on the information processing for bridge
health monitoring are reviewed. First, the process of
SHM is introduced to point out when the information
processing techniques are necessary. Details on
information processing in bridge health monitoring
including various kinds of signal processing and
damage detection algorithms will be explained. Several
challenges addressing critical issues in the current
bridge health monitoring system are introduced.
Finally, future R&D activities will be envisioned

followed by concluding remarks.
2. Structural Health Monitoring for Bridges

The process of bridge health monitoring involves the
definition of potential damage scenarios for the system,
the observation of the system over a period of time
using periodically spaced measurements, the extraction
of features from these measurements, and the analysis
of these features to determine the current state of
health of the system. The output of this process is
periodically updated information regarding the capability
of the system to continue to perform its desired
function in light of the inevitable aging and degradation
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Figure 1 The process of bridge health monitoring

resulting from the operational environments. Figure 1
shows the procedure of bridge health monitoring.
Damage detection methods in viewpoint of structural
health monitoring for bridge structures need some
special features such as (1) quick calculation suitable
for continuous on-line monitoring, (2) low possibility
of damage missing, and (3) handling a huge information

applicable to a large civil-infra structures.

2.1 Measurement and Data Acquisition

Measurement and data acquisition portions of the
SHM process involve selecting the types of sensors to
be used, selecting the location where the sensors
should be placed, determining the number of sensors
to be used, and defining the data acquisition/storage/
transmittal hardware. This process is application
specific. Economic considerations play a major role in
these decisions. The primary sensors used for bridge
health monitoring are strain gauges, displacement
transducers, accelerometers, tiltmeters, etc. In addition
to the structure’s responses, environmental variability
such as temperature, humidity and wind speed is of
great concern. Long-span bridges have been instrumented
with these conventional sensors. For example, 66
sensors for static and dynamic measurements were
installed at Jindo Bridge: 74 channels are used to
measure the static data such as bi-axial tiltmeters,
submersible tiltmeters, and static strain gauges and
36 channels are used to measure the dynamic data
such as dynamic strain gauges, accelerometers, and

anemometers in Namhae Bridge: a total of 380 sensors
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Figure 2 Remotely Controllable SHM System Using
3.5G Mobile Telecommunication Technology
(Lee et al., 2008).

were installed at Yongjong Bridge: 21 sensors for static
and 99 for dynamic data were instrumented at Seohae
Bridge(Yun et al. 2004a).

Not limited to these conventional sensors, the smart
sensors, such as piezoelectric sensors, optical fiber
sensors, optic sensors, MEMS and Wireless sensors,
etc. enrich and complement a currently available list
of sensors for monitoring the structural response of
bridges. As to the data transmission and recording, the
researches on wireless data acquisition systems for
large civil engineering structures have been increased
rapidly(Yi et al., 2006: Kim, 2008; Heo et al., 2007).
3.5 generation mobile telecommunication technology,
HSDPA(High Speed Downlink Packet Access) was
utilized to construct remotely controllable bridge
monitoring system in rural areas where conventional
internet services are not readily available as shown
Figure 2(Lee et al., 2008).

2.2 Feature Selection

Feature selection is a very important process. Since
the features are used to distinguish the damaged
structures from undamaged ones, many researchers
have paid a lot of attention to select proper features
representing the structure's status. Usually, the
condensation of the data is the first step in the feature
selection process. Data condensation is advantageous
and necessary, particularly in the on-line monitoring
system where comparisons of many data sets over the
lifetime of the structure are envisioned. Also, robust
data reduction techniques must retain sensitivity of

the chosen features to the structural changes of
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interest in the presence of environmental noise. The
best features for damage detection are typically
application specific. Numerous features are often
chosen for a structure and assembled into a feature
vector. In general, a low dimensional feature vector is
desirable. Various signal processing techniques in
frequency domain, in time domain, and in time-
frequency domain can be employed to identify features
for damage detection. Fitting linear or nonlinear,
physical-based or non-physical-based models of the
structural response to measured data can also help
identify damage-sensitive features. Basic modal properties
including natural frequencies, mode shapes and modal
damping ratios, mode shape curvature changes,
dynamic flexibility matrices and stiffness indices from
updated finite element models are most commonly used

for damage detection in bridges(Doebling et al., 1996).

2.3 Damage Estimation

Damage estimation process in the bridge health

monitoring involves the pattern classification/
recognition process. Usually four levels of damage
identification(detection, localization, quantification,
and prediction) are discriminated(Rytter 1993). The
damage detection methods for SHM techniques can
be classified as global or local methods based on
the type of information to be used. They can be
also classified into two groups according to the
dependence on the structural model: i.e. signal-
based and model-based methods(Doebling et al.,
1998; Zou 2000). Signal-based methods detect
damages by comparing the structural responses
before and after damages, not using the information
on the structural model. Damages are defined by
damage indices, which may be determined using the
results of the experimental modal analysis(Abdel
Wahab and De Roeck 1999:; Pandey et al. 1991;
Sampaio et al. 1999; Stubbs et al. 1995) or the
time—frequency domain analysis(Hou and St. Amand
2000; Quek et al., 2001 Zou 2002). Signal-based
damage estimation methods are generally appropriate

to detect the damage existence and locations, but
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they are not effective for estimating damage severities.
On the other hand, model-based methods can
estimate the damage severities as well as locations
by correcting the mathematical model of the structure
based on the experimental data. This is possible
since the structural damages result in changes of
the dynamic characteristics(Brownjohn 2001: Shi et
al., 1998; Stetson and Harrison 1981: Yun and
Hong 1992). Using the measured data, various
techniques have been developed for estimating the
stiffness changes due to damage. Recently, soft
computing techniques such as the neural networks
and genetic algorithm and various pattern recognition
algorithms such as probabilistic neural networks and
support vector machine have been utilized increasingly,
since the damage detection problem falls into pattern
classification/recognition problem(Chou and Ghaboussi
2001; Lee and Yun 2007; Levin and Lieven 1998:
Specht 1990; Vapnik 1995; Wu et al., 1992: Yun
and Bahng 2000). In the following section, more
details on various damage detection methodologies

will be addressed.

3. Information Processing Techniques

Information processing in bridge health monitoring
includes (1) signal processing for feature extraction
from the continuously monitored data and (2) damage
detection based on the damage-sensitive features or
raw measurement signals using various pattern

recognition and optimization techniques.
3.1 Signal Processing Techniques

3.1.1 Frequency domain methods

Filtering is the fundamental signal processing tool in
frequency domain, which may be used for a range of
applications such as rejecting unwanted signals, data
smoothing, sample rate conversion(upward and downward
decimation), etc. Three basic ideal filters are low—pass,
high-pass and band-pass filters. To design a filter for
a specific bridge monitoring system, engineers should

use prior knowledge on the structure’s expected responses



and the sensors performance, since filtered signals
may lose significant information on the structures
status.

Experimental modal analysis{EMA) has drawn lots
of attention from structural engineers for updating the
analysis model and estimating the present state of
structural integrity. EMA is the procedure to find the
frequency. damping and mode shapes from experiment,
and those modal parameters can describe the structure’s
physical model(mass, stiffness, and damping). Forced
vibration tests such as impact tests can be carried out
for this end, however, it may be restricted to small~
scaled structures and/or it may be difficult and expensive
for large structures such as dam, and long-span
bridges. In those cases, ambient vibration tests under
wind, wave, or traffic loadings may be more effective
alternatives. In a continucus bridge monitoring system,
the ambient vibration data will be the fundamental
data to be processed.

Since the modal parameters are, in nature, the
structure’s frequency information, most of the
experimental modal analyses are carried out in
frequency domain. The peak picking(PP) method using
power spectral density (PSD) functions is widely used
in practice(Bendat and Piersol 1991). The frequency
domain decomposition(FDD) method that utilizes the
singular value decomposition of the PSD matrix may be
used to separate close modes(Brincker et al., 2000).
The method was originally used to extract the
operational deflection shapes in mechanical vibrating
systems(Otte et al., 1990). Enhanced Frequency
Domain Decomposition(EFDD) method is newly
devised to identify damping in a closely spaced mode,
which combines FDD algorithm and time domain modal
parameter identification algorithm for a single degree
of freedom system(Brincker et al., 2001).

Recently, experimental modal analysis has been
carried out in the long-span bridges to obtain the
dynamic characteristics such as natural frequencies
and mode shapes(Chang et al., 1994). Jung et al.
{2002) carried out ambient vibration tests on Namhae
suspension bridge and the effect of traffic and

temperature on the measured natural frequencies was
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investigated. Kim and Park(2008) performed modal
parameter identification based on the ambient vibration
data of Sechae Cable-stayed Bridge. Cable tension is
of great concern in the long-span cable bridges(Kim et
al., 2006). Kim et al.(2007) developed back analysis
technique for the estimation of cable tension force of
Gwang-An suspension bridge based on the identified

natural frequencies from acceleration data.

3.1.2 Time domain methods

There are several time-domain modal parameter
identification methods, most of which use an assumption
that the ambient loads are Gaussian white noise
processes. Ibrahim time domain method was developed
in late 1970s(Ibrahim 1977), which was formulated
based on the condition with free vibration responses in
continuous time domain. The eigensystem realization
algorithm(Juang 1994) and the stochastic subspace
identification method(Overschee and De Moor 1996)
were developed based on the system theory in the
discrete time domain. Yi and Yun(2003) carried out
comparative studies on output-only modal identification
algorithms by comparing the modal parameters obtained
from various experimental data such as ASCE benchmark
structure subjected to roof excitation, National Taiwan
University(NTU) building frame model subjected to
earthquake excitation, and a bridge model under traffic
loadings. Before applying modal parameter identification
algorithms to ambient vibration data, the random
decrement(RD) technique can be employed to produce
free-decay signals, from which the modal parameters
can be easily extracted, by averaging the measured
responses which are divided using several triggering
scheme(Cole, 1968).

As one of the most popular time-domain method, the
Autoregressive Moving-Average(AR-MA) algorithm can
be used to describe the input-output relationship of a
system. Since a few coefficients in ARMA model can
represent the system's characteristics, the complexity
dimension to be processed in a bridge health monitoring
system will be affordable. Variations of the ARMA
method to accommodate multi-point multi-output situations

are the co-called Autoregressive Moving-Average with
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Figure 3 Estimation of a cable damping using Hilbert
Transformation(Kim et al., 2008).

exogenous variables, ARMAX, and the Autoregressive
Moving-Average Vector, ARMAV{(Maia and Silva,
1997). Sohn et al.(2000) utilized an auto-regressive
(AR) model fit to the measured time histories from an
undamaged structure, and selected the coefficients of
the AR model as the damage-sensitive features.
Hilbert transformation can be used to investigate
the time varying modal parameters(Jang, 2005). Since
it can be applicable to a single mode vibration data,
filtering the raw signal is required to re-generate
signals with specific frequency contents. Kim et al.
(2008) identified the amplitude-dependent, time
varying damping ratios of a stay cable using Hilbert

transform.

3.1.3 Time-Frequency domain techniques

Fourier transform decomposes a signal into its
various frequency components. As it uses the sinusoidal
basis functions that are localized in frequency only, it
loses the transient feature of signals. Therefore, it is
necessary to implement the time-frequency analysis
for diagnostics of transient signals. As one of the
time-frequency domain transformation techniques, the

short-time Fourier transform calculates the local
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spectral density using windowing techniques to analyze
a small section of the signal at a time. However, it is
impossible to simultanecusly achieve high resolution
in time and frequency.

In order to overcome the limitations of harmonic
analysis, alternative families of orthogonal basis
functions called wavelets have been used. The wavelet
analysis was originated from 1909's by Haar, but it
began to be widely used in the field of signal processing,
such as image processing, pattern recognition, regression
estimation, and other various applications since 1990
{(Mallat, 1998). In recent years, wavelet transform has
been also frequently used for damage detection. Zou et
al.(2002) applied wavelet decomposition for identification
of a cracked rotor, Newland(1999) used harmonic
wavelets to identify ridge and phase in the frequency
analysis of transient signals. Hou and St. Amand
(2000) used a wavelet decomposition to damage
detection for a single degrees of freedom system with
multiple breakable springs, and Lu and Hsu(2002)
used it for detection of mass concentration of an
inhomogeneous string.

The Hilbet-Huang Transform(HHT) was developed
for time-frequency analysis of dynamic signals by
Huang et al.(1998). The HHT can be applied to many
mathematical and engineering problems and is superior
to the existing Fourier-based method in processing
non-stationary data. Recently, its applications increase.
In civil engineering, Zhang. and Ma.(2001) used the
HHT to analyze near-source ground motion recordings.
Another basic application of the HHT is the system
identification of linear structures by Yang and Lei
(2000) who presented the identification of the dynamic
characteristics of linear multi-degrees of freedom(MDOF)
systems using measured impulse response based on
the HHT method. The HHT may be applied to analyze
structural response and extract damping. Chen and
Xu(2002) used empirical mode decomposition to
identify modal damping ratios of structures with
closely spaced modal frequencies.

Time-frequency domain methods such as Hilbert-
Huang transform(HHT) and wavelet transform techniques
have been applied to the detection of damage locations
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Figure 4 Damage Detection for Bridge-Pier System Using Time-frequency Domain Methods(Jang, 2003)

in several civil infrastructures(Jang, 2003). The HHT
and wavelet methods may be used to identify the
locations of damages which exhibit nonlinear and
non-stationary behavior, since the instantaneous
frequency characteristics of the measured signals can
be analyzed by those methods. Various numerical
simulations have been carried out on bridge structures
with damages using controlled excitations with sweeping
frequency as shown in Figure 4. Bilinear model using
a gap element is employed to model the behavior of
cracked elements in the numerical simulations. The
results indicate that time-frequency domain methods
can reasonably identify the damage locations based on

a limited number of acceleration sensors.

3.1.4 Principal Component Analysis

Principal component analysis(PCA) is a statistical
technique that linearly transforms an original set of
variables into a substantially smaller set of uncorrelated
variables that represents most of the information in
the original set of variables(Jlooiffe, 1986). It can be
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viewed as a classical method of multivariate statistical
analysis for achieving a dimensionality reduction, also
known as Karhunen-Loeve(KL) transform(Krzanowski,
2000). Based on the fact that a small set of uncorrelated
variables is much easier to understand and use in
further analysis than a larger set of correlated variables,
this data compression technigue has been widely
applied to virtually every substantive area including
engineering, biology, medicine, chemistry, meteorology,
geology, as well as the behavioral and social sciences.

Park et al.(2008) utilized the PCA algorithm for
data compression and noise reduction of the electro-
mechanical impedance signatures, since the size of the
raw impedance data is prohibitive for a direct use and
the raw impedance data are usually very sensitive to
some ambient noise effects. The most significant
principal components(PCs) obtained from the raw
impedances contain dominant frequency responses. In
order to determine an adequate number of the PCs
which can represent the original impedances well, the

reconstruction using a different number of the PCs was

Reconstructed impedance Using 4 PCs
540 PSR e

baseline baseline

535-

530-

Refz)

525
5200 LV e«

66 6.8 7 515 62 64 68 58 7

Frequence [Hz] X1 04

Figure 5 Reconstructed impedances using a different number of principal components{Park et al., 2008)
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investigated as in Figure 5.

3.2 Damage Detection Methods

3.2.1 Signal-based damage detection

Various kinds of feature vectors have been utilized
in the signal-based damage detection. Examples are
raw strain or acceleration data, frequency response
function, electro-mechanical impedance, modal quantities
including natural frequencies, mode shapes and modal
damping. Variations of modal quantities such as Modal
Assurance Criterion(MAC), Coordinate Modal Assurance
Criterion(Heo et al., 2003), mode shape curvature,
and time varying dynamic characteristics such as wavelet
coefficients have been widely utilized as damage-

sensitive feature vectors.

Changes in modal parameters

Modal parameters are identified from the measured
response time-histories, most often accelerations. The
amount. of literature that uses resonant frequency
shifts as a feature for damage detection is quite large.
Observing the change of structural properties that
affects vibration frequency was the primary stimuli for
developing signal-based damage identification technology.
The natural frequencies can be measured more
accurately than the mode shapes. However, it is well
known that the natural frequencies are sensitive to the
environmental effects such as temperature, humidity,
etc.

In general, changes in frequencies cannot provide
spatial information about structural changes. Mode
shape vectors are spatially distributed quantities;
therefore, they provide information that can be used to
locate damage. Mode shape curvature can be computed
by numerically differentiating the identified mode
shape vectors twice to obtain an estimate of the
curvature which is much sensitive to small perturbations
in the system than the mode shape itself. Also, for
beam~ and plate-like structures changes in curvature
can be related to changes in strain energy, which has
been shown to be a sensitive indicator of damage(Abdel
Wahab and De Roeck, 1999; Kim and Stubb, 1995: Li
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and Yam, 2001: Pandey et al., 1991: Yao, 1992).

Outlier analysis

An automated damage diagnostic system without
requiring any a priori mathematical model of the
structure may provide an efficient SHM tool for real
structures. In order to satisfy this requirement, a so
called “novelty detection” outlier analysis method has
emerged as a robust unsupervised learning pattern
recognition tool for damage detection of structures
(Park, 2003a: Worden, 2000). The outlier analysis
aims to establish simply whether or not a new pattern
is significantly different from the previous patterns, at
the same time automatically ignoring any negligible
differences such as random fluctuations due to noise.
That is, an outlier is an observation that is significantly
different from the rest of the population and therefore
the outlier is believed to be generated by an alternate
mechanism. Researchers have paid attention to the
extreme value distribution from a perspective of
statistical damage assessment, since the response of a
damaged structure will show significant abnormalities
(Sohn, 2005).

3.2.2 Model-based damage detection

Least Square Error-Based Methods

The damage detection methods based on the minimization
of the least-squared errors between the measured and
the calculated responses by the finite element model
have been studied. Several regularization techniques
are introduced to alleviate the ill-posedness of the
system identification problem. A geometric mean scheme
is presented to determine an optimal regularization
factor for Tikhonov regularization technique in the
system identification problems of linear elastic continua.
The characteristics of non-linear inverse problems and
the role of the regularization are investigated by the
singular value decomposition of a sensitivity matrix of
responses(Park et al., 2001). Hjelmstad and Shin
(1997) proposed an adaptive parameter grouping
updating scheme to localize the damage zones in the
structure and utilized a Monte Carlo method with a

data perturbation scheme to provide a statistical basis



for assessing damage. Lee et al.(1999) presented a
system identification scheme to determine the geometric
shape of an inclusion in a finite body. A variable
regularization factor scheme is proposed for a consistent
regularization effect. Numerical simulations and laboratory
experiments have been performed on various kinds of
model structures(Park, 2003b). Yi and Yun(2002)
applied the inverse perturbation technique for FE
model updating, in which Tikhonov regularization
algorithm was employed to reduce the ill-posedness

during the FE model updating.

Modal Strain Energy based-based Methods

Kim and Stubbs(2002) recently proposed an improved
damage indication method to predict locations and
severities of damage in structures using changes in
modal strain energy. The damage prediction accuracy
was numerically assessed for a two—span continuous
beam using a few vibration modes. Kim et al.(2003a)
presented a methodology to nondestructively locate
and estimate the size of damage in structures for which
a few natural frequencies or a few mode shapes are
available. A frequency-based damage detection method
and a mode-shape-based damage detection method
were developed, and numerical simulations were

performed on a prestressed concrete beam.

Kalman Filter

In 1960, R.E. Kalman published his famous paper
describing a recursive solution to the discrete-data
linear filtering problem. Yun and Shinozuka(1980)
applied the extended Kalman filtering to the identification
of a structural dynamic system with nonlinear damping
terms by introducing the state vector augmented with
the unknown parameters to be identified. Loh and
Chung(1993) applied the extended Kalman filtering on
identification hysteretic nonlinear systems. Recently
the extended Kalman filtering technique is applied to
identification of time-varying dynamic characteristics
by Sato and Takei(1997) and Loh et al.(2000).

The extended Kalman filter has been widely used for
detection of the parameter changes due to the structural

degradation and damage because the technique can

o1 - vtd % - &AM - 771 - o)
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identify time-varying parameters including abrupt
changes of parameters. However the extended Kalman
filter has several drawbacks such as divergence
phenomenon and biased estimation. Many adaptation
algorithms and innovative filtering techniques such as
sequential prediction error method, unscented Kalman
filter and Gauss-Hermite filters have been studied to
enhance the results of the parameter estimation for
systems with MDOF based on a limited numbers of the

measured components{Koo and Yun, 2002).

3.2.3 Soft computing techniques for pattern
recognition

Soft computing techniques such as neural networks
(NN) and genetic algorithms{GA) have been utilized
increasingly for the damage estimation due to their
excellent pattern recognition capability(Chou and
Ghaboussi, 2001; Wu et al., 1992; Yun and Bahng,
2000). Basically, NN and GA can be utilized as an
optimization tool in the least square error-based
approach, in which those methods were found to have
almost same performance. NN requires all training
samples to be prepared prior, whereas GA calculates
the cost(lost) function for several cases(training
samples) at each step(generation). Therefore, NN is fit
to the on-line health monitoring system and GA can be
utilized for further investigations after damage
alarming happens.

Probabilistic neural networks(PNN) and support
vector machine(SVM) have been utilized for various
pattern recognition problems. PNN differs from NN,
since it requires only forward processing whereas NN
needs to be trained by error back-propagation algorithms.
SVM can provide an optimal decision boundary in
classification problem, since it is based on the Structural
Risk Minimization(SRM) principle and the optimal
decision boundary maximizes the margin. To apply
PNN and SVM techniques to damage detection of bridge
structures, special concerns should be paid to reduce
the number of input and output variables, since they
can show excellent classification performance with

small dimension of complexity.
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Neural Networks

Pattern-recognizing techniques using neural networks
(NN) have been well utilized in the field of structural
identification for complex structures. Using NN, structural
identification can be carried out without the mathematical
models and the inverse search procedure. For on-line
health monitoring, the damage identification should be
quickly carried out for adequate diagnosis on the structural
integrity. Moreover, when the health monitoring system
gives an indication of occurrence of damages, detailed
analyses should immediately follow for verification.
The NN-based identification approach has great
advantage for on-line health monitoring, since it needs
very short time to assess the structural integrity based
on the measured data once the NN has been trained

properly. Moreover, the NN can deal with various
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types of input data. Lee et al.(2002) presented a
NN-based damage estimation of a bridge structure
using ambient vibration data caused by the traffic
loadings. An improved algorithm to consider the
modeling errors in the baseline finite element model
was also presented(Lee et al., 2005). Experimental
studies were carried out on a bridge model subjected
to vehicle loadings and on a span of Hannam Grand
Bridge over Han River in Seoul to confirm the
applicability of the NN-based approach. (Figures. 6-7).

Genetic Algorithms

The genetic algorithm is a random search algorithm
based on the mechanics of natural selection and
natural genetics. GA revolves around the genetic

reproduction processes and survival of the fittest



strategies. GA has many advantages such as (1) it can
optimize with continuous or discrete parameters; (2)
it can deal with a large number of parameters: (3) it
has possibility of optimizing parameters with extremely
complex objective function that has several local
minima, and (4) it is well suited for parallel computing
techniques.

Yun et al.(2004b) applied the genetic algorithm to
modify the structural model of two actual bridges
based on the modal data such as natural frequencies
and mode shapes. Jung and Kim(2006) suggested a
model updating method based on a hybrid optimization
technique using genetic algorithm and Nelder-Mead
simplex method. Lee(2005) suggested a method to
identify damages of free vibrating thin plate structures
using the combined finite element method and the

micro—genetic algorithm.

Support Vector Machine
Recently, the support vector machine(SVM) has been
applied to various pattern recognition applications

such as text classification and image recognition(Vapnik,
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1995: Ye et al., 2005), and has been extended to
regression analysis(Muller et al., 1997; Vapnik, 1999;
Zhang et al., 2006). The support vector machine(SVM)
is an automated learning system that uses a hypothesis
space of linear functions in a high dimensional feature
space. The formulation is based on the Structural Risk
Minimization(SRM) principle. The simplest model is
called as the linear SVM, and it works for data that
are linearly separable in the original feature space
only. In the early 1990s, nonlinear classification in the
similar procedure as in the linear SVM became possible
by introducing nonlinear functions called kernel
functions without being conscious of actual mapping
space.

Park et al.(2006) applied support vector machine to
discriminate damages out of Lamb wave path and
damages in Lamb wave path for the steel beam plate
model. Wavelet coefficients and the time of flights of
Lamb waves guided by two PZT patches were utilized

as input feature vectors to support vector machine.

Probabilistic Neural Networks

»!
il

100 mm || 475 mm 10U mm 100 mm
_ o @5 ooy
ﬂ ‘0 @6 100 mm
- 39. 971 .
4 TR YR
- / > Lamb Wave
700 mm Path
PZT1
Z\ T, R : PZT patches (3.5x2.5 cm) PZT2
b 1 ¢ .i 2mm
—wrw

A Transmitter

Receiver ﬂ

(a) Experimental Configuration

TOF
Intact & out-of-path damages

wC

TOF
Intact & in-path damages
(b) Feature Space Divided by SVM Classifiers

Figure 8 Loose bolt detection using support vector machine(Park et al., 2006)
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Probabilistic neural networks(PNN) is basically a
pattern classifier that combines the well-known Bayes
decision strategy with the Parzen non-parametric
estimator of the probability density functions of different
classes(Specht, 1990). PNN has an advantage of quick
calculation, since it is basically forward process. It
does not need the training process as in the
conventional neural networks. PNN uses supervised
learning algorithms, and the training patterns are to
be generated from the FE model. Training process in
PNN is just to allocate some training samples to a
certain class. The class to be identified can be defined
according to the damage mechanism, the type and
location of structural members, the individual structural
members etc.

PNN has been used for damage detection of bridge
structures. Ni et al.(2000) applied PNN to identify the
damage type and location in the cable-stayed Ting Kau
Bridge from the simulated noisy modal data. Cho et
al.(2002) presented two-step approach using PNN to
identify the damage location and the severity of
damage using simulation data. Aoki et al.(2002)
identified collapse mechanism of chemical plants using
PNN for seismic vulnerability assessment. Lee and
Yun(2007) identified the damage location of the old
Hannam Grand Bridge using PNN based on the mode
shape differences between before and after damage. To
reduce the number of classes to be identified, some

neighboring elements were grouped to the same class.

4. Challenges in information processing for
structural health monitoring of bridges

Some issues remain to be resolved before the
conventional information processing techniques become
truly viable methods for structural identification and
damage assessment such as

* Measurement noise,

* A limited number of sensors,

* A large number of structural members.

* Sensitivity to environmental conditions,

* A new paradigm of decentralized SHM

s
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The effect of measurement noise can be relieved by
the noise injection learning algorithm in the neural
networks-based damage detection methods(Lee et al.,
2002), and the regularization scheme in the least
square error-based approach(Park et al., 2001).
However, field engineers should pay careful attention
to obtain data as clean as possible at site, since no
sophisticated algorithm can produce valuable results
from garbage.

The number of sensors is related to the damage to
be monitored as well as the cost. The researches about
optimum number and locations of sensors for health
monitoring have been carried out.(Heo and Choi,
2002) studied an optimal sensor location(OSL) criterion
suitable to the continuous health monitoring of a cable
stayed bridge, in which a kinetic energy optimization
technique and an effective independence method were
analyzed. Park(2003c) utilized Shannon’s sampling
theorem to reconstruct exact mode shapes of a structural
system from a limited number of sensor points and
localizing damage in that structure with reconstructed
mode shapes. Kwon et al.(2004) proposed a new
optimal sensor location(OSL) method for locating
accelerometers for modal identification, which applies
the maximum likelihood method to determine OSL and
results in a fisher information matrix(FIM) based on
the eigenvector sensitivity with respect to structural
parameters.

For realistic bridge structures, the degree of freedom
(DOF) could be very large. The more complex the
structural system is, the more difficult the required
numerical calculation is. In addition, for the large
structures, measuring and identifying the whole
structures are very difficult, and the accuracy of the
estimate is rarely reliable. One resolution is to use the
substructural identification technique(Yun and Bahng,
2000): the structure can be examined substructure by
substructure. Some subsections of a structural system
may be more important and/or critical for structural
safety. Another resolution is to use a multi-stage
approach for damage detection of large structures(Ko
et al., 2002; Lee and Yun, 2006). This multi-stage
diagnosis strategy aims at successive detection of the



occurrence, location and extent of the structural
damage. It has many advantages such as efficiency in
computational time and better estimation accuracy,
etc. Moreover, it is suitable for on-line monitoring
scheme. In a multi-stage approach, the assessment of
damage severities is performed on the potential
damaged members, which are to be identified in the
previous stage. Accordingly, the damage assessment is
undertaken on the less number of members, which can
make the estimate results more accurate.

The issues on a limited number of sensors but a large
number of structural members can be relieved by using
the smart sensor technologies such as optical-fiber
sensors, MEMS sensors, etc. Optical-fiber sensors
have an advantage of multiplexing which can increase
the number of sensors for bridge monitoring(Kim,
2006). MEMS sensors have an advantage of very low
cost(Kim, 2008). Therefore, as the technologies on
smart sensors are rapidly developed, a number of
sensors can be fully employed in a structural health
monitoring system in a cost-effective manner.

In real structures, the temperature effects on the
measured structural responses can be much larger
than the effects of damages, which may make the
damage detection for real structures difficult. The
changes of the measured data due to the environmental
effects should be studied and those due to the damage
should be discerned. Many researchers have studied
the temperature effect on the dynamic response of a
structure. Kim et al.(2003b) studied the variability of
modal properties caused by temperature effects in
plate—girder bridges and utilized the frequency-
correction formulas to get rid of the temperature
effects. Giraldo et al.(2006) accommodated the influence
of external conditions by means of a principal component
analysis of the identified parameters. Koo(2008)
investigated the variation of impedance signatures
measured by PZT sensors due to temperature effects,
and suggested a new algorithm using cross-correlation
coefficient with an effective frequency shift.

Algorithms for SHM can be categorized as either
centralized or decentralized. The centralized approach

requires all measured data to be synchronized and sent
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to a single location. Decentralized SHM algorithms
allow each sensor to work independently without
communication with surrounding sensor nodes. However,
such decentralized approaches cannot account for
spatial information(e.g., gradients in the strain/
displacement responses, changes in mode shapes,
ete.). Gao(2005) has recently proposed one of the first
SHM strategies that is hierarchical in nature, allowing
communities of nodes to collaborate, and account for
spatially measured, multi-scale information. As the
wireless sensors technologies have been developed
rapidly, the scheme of decentralized SHM draws lots
of attention and the algorithms suitable for the
decentralized wireless sensor system should be
embedded at a local control station, which is equipped
with data acquisition boards, on-board computing

processors, and wireless telemetry.

5. Concluding Remarks

In this paper, the information processing techniques
for bridge health monitoring including signal processing
techniques and damage detection algorithms have been
reviewed. The developments and applications of the
SHM systems have been very active particularly on long
span bridges in Korea. However, the current system is
limited to the development and installation of the
monitoring systems for collection of the bridge responses
under various operational and environmental loadings.
They utilized advanced technologies such as data
transmission by optical cables and web-based data
display and management. However, further improvements
are needed for information processing for active use of
current monitoring facilities. In this regard, several
challenges in information processing for structural health
monitoring of bridges have been suggested. Since no
sophisticated algorithm can produce valuable results
from garbage data, the R&D activities on hardware
components including smart sensors should be preceded.

Recently, several mega-projects sponsored by
Ministry of Land, Transport, and Maritime Affairs
(MLTM) have been initiated and several more projects

are scheduled to be launched soon. In those projects,
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(1) smart sensors such as GPS, wireless sensors, optical
fiber sensors, etc., to gather geological, geographical,
material and structural information, (2) information
processing and structural health monitoring based on
the measured data, and (3) integrated and automated
system harvesting multi-disciplinary techniques from
information technology, material science, mechanical
engineering, robotics, electric/electronic engineering,
not limited to civil and architectural engineering, are
being highlighted. It is highly expected for practical
bridge monitoring system to be actively realized

through those application projects several years later.
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