• Title/Summary/Keyword: bridge impact

Search Result 437, Processing Time 0.03 seconds

Estimation of Displacement Responses Using the Wavelet Decomposition Signal (웨이블릿 분해신호를 이용한 변위응답의 추정)

  • Jung, Beom-Seok;Kim, Nam-Sik;Kook, Seung-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.347-354
    • /
    • 2006
  • In this paper we have attempted to bring the wavelet transform theory to the dynamic response conversion algorithm. This algorithm is proposed for the problem of estimating the displacement data by defining the transformed responses. In this algerian, the displacement response can be obtained from the measured acceleration records by integration without requiring the knowledge of the initial velocity and displacement information. The advantage of the wavelet transform over either a pure spectral or temporal decomposition of the signal is that the pertinent signals features can be characterized in the time-frequency plane. In the response conversion procedure using the wavelet decomposition signals, not only the static component can be extracted, but also the dynamic displacement component can be separated by the structural mode from the identified displacement response. The applicability of the technique is tested by an example problem using the real bridge's superstructure under several cases of moving load. If the reliability of the identified responses is ensured, it is expected that the proposed method for estimating the impact factor can be useful in the bridge's dynamic test. This method can be useful in those practical cases when the direct measurement of the displacement is difficult as in the dynamic studies of huge structure.

A Feasibility Study on the Application of Self-Shielded Flux Cored Arc Welding Process for the On-Site Steel Bridge Box Fabrication (교량용 강재 박스의 현장 제조시 셀프실드 플럭스코어드 아크용접의 적용 타당성에 대한 연구)

  • Hwang, Yong-Hwa;Koh, Jin-Hyun;Oh, Se-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.2
    • /
    • pp.122-128
    • /
    • 2005
  • A feasibility study on the application of self?shielded flux cored arc welding to the on-site SM520 steel bridge box fabrication for express trains and high way construction instead of gas-shield flux cored arc welding was conducted in terms of weld soundness, mechanical properties, toughness and microstructures. All welded specimens made with the self?shielded FCAW process were tested by magnetic particle and ultrasonic techniques and they were found to be sound. All multipass weld specimens made with both self-shielded and gas-shielded FCAW processes showed yield and tensile strengths of $462{\sim}549\;MPa$ and $548{\sim}640\;MPa$, respectively. The impact values of Charpy V-Notch weld specimens also met with the required value of 40J at $-20^{\circ}C$. The hardness values of the top area of weldments were higher than those of the bottom area because of higher residual stresses in the near surface. It was found that welding characteristics of SM520 steel by the on-site welding conditions with self-shielded FCAW showed almost equivalent to those by gas-shielded FCAW in terms of sound welds, mechanical properties and microstructure.

  • PDF

Fatigue Durability Evaluation of Refraction Expansion Joints (굴절형 신축이음장치의 피로내구성 평가)

  • Na, Jun-Su;Lee, Ta;Han, Eui-Seok;Sung, Won-Kyu;Lee, Jong-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.10-15
    • /
    • 2017
  • The refraction expansion joints have been newly developed by complementing the problems of shock, noise, replaceability, displacement in the direction perpendicular to bridge, vertical difference, which are problems of existing expansion joints. The Refraction expansion joints are characterized by continuous surfaces with small impact and low noise. The behavior of the Refraction expansion joints performs the bridge expansion behavior by rotation of the link. In the rotational behavior of the link, the bolt is the central axis of the behavior. Therefore, it can be said that the durability of the bolt is very important. However, the theoretical and experimental verification of the bolt durability of the Refraction expansion joint is lacking. In this paper, to verify the fatigue durability of the bolt, test specimens with a 300 mm Refraction expansion joint were fabricated. A strain gauge dedicated to the bolt was installed inside the manufactured test specimen bolt. The test method was applied in accordance with KS F 4425. The fatigue durability of the bolts assembled inside the diaphragm expansion joint was confirmed by the repeated fatigue test of 2,000,000 cycles.

The study of a practical modeling method for the analysis of dynamic behavior by the mockup test of prestressed concrete girder (PSC I형 거더 실물 모형체 실험을 통한 동적거동특성 분석의 실용적 모델링 기법 연구)

  • Kim, Hyung-Kyu;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.148-156
    • /
    • 2018
  • The integrity assessment of the bridge behavior is generalized by field data of a static load-deformation curve and dynamic properties such as impact factors and natural frequencies. Evaluating it with numerical analysis is a reasonable method. The results of the mockup test and the numerical analysis are corresponded with each other since the behavior of service load proceeds in elastic region. In case of the dynamic behavior of structure, especially for the analysis of vibration, the result of the mockup test differs from the result of numerical analysis a little due to the geometric shape and non-homogeneous materials. In order to converge on these tolerances, this study suggested several numerical models, analyzed the sensitivity and finally offered a practical modeling method for the estimation of bridge on the basis of the result of mockup test. Based on the model substituted concrete section for strands section, the natural frequency of the model composed with axial stiffness of strands or the model applied the modified modulus of elasticity was closest with the result of the mockup test.

Development of Wireless Smart Sensing Framework for Structural Health Monitoring of High-speed Railway Bridges (고속 철도 교량의 구조 건전성 모니터링을 위한 스마트 무선 센서 프레임워크 개발)

  • Kim, Eunju;Park, Jong-Woong;Sim, Sung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.1-9
    • /
    • 2016
  • Railroad bridges account for 25% of the entire high-speed rail network. Railway bridges are subject to gradual structural degradation or fatigue accumulation due to consistent and repeating excitation by fast moving trains. Wireless sensing technology has opened up a new avenue for bridge health monitoring owing to its low-cost, high fidelity, and multiple sensing capability. On the other hand, measuring the transient response during train passage is quite challenging that the current wireless sensor system cannot be applied due to the intrinsic time delay of the sensor network. Therefore, this paper presents a framework for monitoring such transient responses with wireless sensing systems using 1) real-time excessive vibration monitoring through ultra-low-power MEMS accelerometers, and 2) post-event time synchronization scheme. The ultra-low power accelerometer continuously monitors the vibration and trigger network when excessive vibrations are detected. The entire network of wireless smart sensors starts sensing through triggering and the post-event time synchronization is conducted to compensate for the time error on the measured responses. The results of this study highlight the potential of detecting the impact load and triggering the entire network, as well as the effectiveness of the post-event time synchronized scheme for compensating for the time error. A numerical and experimental study was carried out to validate the proposed sensing hardware and time synchronization method.

Bone-Preserving Decompression Procedures Have a Minor Effect on the Flexibility of the Lumbar Spine

  • Costa, Francesco;Ottardi, Claudia;Volkheimer, David;Ortolina, Alessandro;Bassani, Tito;Wilke, Hans-Joachim;Galbusera, Fabio
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.6
    • /
    • pp.680-688
    • /
    • 2018
  • Objective : To mitigate the risk of iatrogenic instability, new posterior decompression techniques able to preserve musculoskeletal structures have been introduced but never extensively investigated from a biomechanical point of view. This study was aimed to investigate the impact on spinal flexibility caused by a unilateral laminotomy for bilateral decompression, in comparison to the intact condition and a laminectomy with preservation of a bony bridge at the vertebral arch. Secondary aims were to investigate the biomechanical effects of two-level decompression and the quantification of the restoration of stability after posterior fixation. Methods : A universal spine tester was used to measure the flexibility of six L2-L5 human spine specimens in intact conditions and after decompression and fixation surgeries. An incremental damage protocol was applied : 1) unilateral laminotomy for bilateral decompression at L3-L4; 2) on three specimens, the unilateral laminotomy was extended to L4-L5; 3) laminectomy with preservation of a bony bridge at the vertebral arch (at L3-L4 in the first three specimens and at L4-L5 in the rest); and 4) pedicle screw fixation at the involved levels. Results : Unilateral laminotomy for bilateral decompression had a minor influence on the lumbar flexibility. In flexion-extension, the median range of motion increased by 8%. The bone-preserving laminectomy did not cause major changes in spinal flexibility. Two-level decompression approximately induced a twofold destabilization compared to the single-level treatment, with greater effect on the lower level. Posterior fixation reduced the flexibility to values lower than in the intact conditions in all cases. Conclusion : In vitro testing of human lumbar specimens revealed that unilateral laminotomy for bilateral decompression and bone-preserving laminectomy induced a minor destabilization at the operated level. In absence of other pathological factors (e.g., clinical instability, spondylolisthesis), both techniques appear to be safe from a biomechanical point of view.

Study on the improvement of prediction model for the railway environmental noise using ISO 9613-2 (ISO 9613-2를 이용한 철도 환경소음 예측 모델 개선에 관한 연구)

  • Jang, Seungho;Koh, Hyo-In;Hong, Jiyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.1
    • /
    • pp.11-26
    • /
    • 2017
  • Approximate empirical equations obtained by measuring overall noise levels at different distances have been used to evaluate environmental influence of the railway noise though the accurate prediction of noise levels is important. In this paper, a noise prediction model considering the frequency characteristics of noise sources and propagation was suggested to improve the accuracy of noise prediction. The railway noise source was assorted into track, wheel, traction and aerodynamic components and they were characterized with the source strength and speed coefficient at each octave-band frequency. Correction terms for the acoustic roughness and the track/bridge condition were introduced. The sound attenuation from a source to a receiver was calculated taking account of the geometrical divergence, atmospheric absorption, ground effect, diffraction at obstacles and directivity of source by applying ISO 9613-2. For obtaining the source strength and speed coefficients, the results of rolling noise model, numerical analysis and measurements of pass-by noise were analyzed. We compared the predicted and measured noise levels in various vehicles and tracks, and verified the accuracy of the present model. It is found that the present model gives less error than the conventional one, so that it can be applied to make the accurate prediction of railway noise effect and establish its countermeasures efficiently.

Evaluation of Shanghai New Port Development Plan (중국 상해 신항만 개발계획 평가)

  • Nam, Ki-Chan;Song, Yong-Seok;Yeon, Jeong-Hum
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.6
    • /
    • pp.7-15
    • /
    • 2003
  • China is expected to experience rapid increase in container traffic due to the joining to WTO and the fast economic growth. However, logistics-related infrastructure such as sea port is very poor and the capacity is lagging far behind the demand, resulting in transferring around 70% of import and export cargo volume at ports in adjoining countries such as Korea, Taiwan, Hong Kong and Japan. Recently, China announced a huge project of developing an offshore port consisting of 52 berths, 30km away from Shanghai with a connecting bridge. As such plan seems to have a significant impact on the port of Pusan which tries to be a Hub port in Far East Asia, we need to scrutinize the plan. This paper, therefore, tries to examine Shanghai New Port Plan, to evaluate the feasibility and potential competitiveness, and to analyze the impact on Pusan port. For this, we review the situation of major container ports in China and the flow pattern of container traffic to and from Pusan port. We then examine the feasibility of the proposed offshore port with respect to demand and supply for container terminal, weather condition, hinterland connection and resource of investment.

Epigenetic Regulation of Fungal Development and Pathogenesis in the Rice Blast Fungus

  • Jeon, Junhyun
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.11-11
    • /
    • 2014
  • Fungal pathogens have huge impact on health and economic wellbeing of human by causing life-threatening mycoses in immune-compromised patients or by destroying crop plants. A key determinant of fungal pathogenesis is their ability to undergo developmental change in response to host or environmental factors. Genetic pathways that regulate such morphological transitions and adaptation are therefore extensively studied during the last few decades. Given that epigenetic as well as genetic components play pivotal roles in development of plants and mammals, contribution of microbial epigenetic counterparts to this morphogenetic process is intriguing yet nearly unappreciated question to date. To bridge this gap in our knowledge, we set out to investigate histone modifications among epigenetic mechanisms that possibly regulate fungal adaptation and processes involved in pathogenesis of a model plant pathogenic fungus, Magnaporthe oryzae. M. oryzae is a causal agent of rice blast disease, which destroys 10 to 30% of the rice crop annually. Since the rice is the staple food for more than half of human population, the disease is a major threat to global food security. In addition to the socioeconomic impact of the disease it causes, the fungus is genetically tractable and can undergo well-defined morphological transitions including asexual spore production and appressorium (a specialized infection structure) formation in vitro, making it a model to study fungal development and pathogenicity. For functional and comparative analysis of histone modifications, a web-based database (dbHiMo) was constructed to archive and analyze histone modifying enzymes from eukaryotic species whose genome sequences are available. Histone modifying enzymes were identified applying a search pipeline built upon profile hidden Markov model (HMM) to proteomes. The database incorporates 22,169 histone-modifying enzymes identified from 342 species including 214 fungal, 33 plants, and 77 metazoan species. The dbHiMo provides users with web-based personalized data browsing and analysis tools, supporting comparative and evolutionary genomics. Based on the database entries, functional analysis of genes encoding histone acetyltransferases and histone demethylases is under way. Here I provide examples of such analyses that show how histone acetylation and methylation is implicated in regulating important aspects of fungal pathogenesis. Current analysis of histone modifying enzymes will be followed by ChIP-Seq and RNA-seq experiments to pinpoint the genes that are controlled by particular histone modifications. We anticipate that our work will provide not only the significant advances in our understanding of epigenetic mechanisms operating in microbial eukaryotes but also basis to expand our perspective on regulation of development in fungal pathogens.

  • PDF

Natural Frequency Measurement for Scour Damage Assessment of Caisson Pier (교량 우물통 기초의 세굴피해 평가를 위한 고유진동수 측정)

  • Nguyen, Quang-Thien-Buu;Ko, Seok-Jun;Jung, Gyungja;Lee, Ju-Hyung;Yoo, Min-Taek;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.51-60
    • /
    • 2021
  • River scour erodes the soil around the pier, reducing the lateral bearing capacity of the pier and lowering the stability of the structure. In this study, in order to examine the effect of scouring on the stability of the structure, an experiment was performed to measure the natural frequency of the pier according to the excavation of the surrounding ground. Impact vibration test was conducted on the pier with the caisson foundation of the Mangyeonggang Bridge, which is scheduled to be demolished. Accelerometers were attached to the top, center, and bottom of the pier and the acceleration responses were measured by hitting those three points. The experimental results showed that the top hit showed consistent and reasonable results of the acceleration responses according to the hitting position. The measured accelerations were converted to the frequency domain through Fast Fourier Transform (FFT), and then the natural frequency was determined. In addition, to analyze the scour effect on the natural frequency of the pier, the ground around the pier was excavated and the natural frequency change was analyzed. As a result, the natural frequency showed the decreasing tendency according to the excavation depth, but the decrease was small due to the large stiffness of the caisson foundation.