• Title/Summary/Keyword: bridge impact

Search Result 439, Processing Time 0.021 seconds

Seismic performance assessment of R.C. bridge piers designed with the Algerian seismic bridges regulation

  • Kehila, Fouad;Kibboua, Abderrahmane;Bechtoula, Hakim;Remki, Mustapha
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.701-713
    • /
    • 2018
  • Many bridges in Algeria were constructed without taking into account the seismic effect in the design. The implantation of a new regulation code RPOA-2008 requires a higher reinforcement ratio than with the seismic coefficient method, which is a common feature of the existing bridges. For better perception of the performance bridge piers and evaluation of the risk assessment of existing bridges, fragility analysis is an interesting tool to assess the vulnerability study of these structures. This paper presents a comparative performance of bridge piers designed with the seismic coefficient method and the new RPOA-2008. The performances of the designed bridge piers are assessed using thirty ground motion records and incremental dynamic analysis. Fragility curves for the bridge piers are plotted using probabilistic seismic demand model to perform the seismic vulnerability analysis. The impact of changing the reinforcement strength on the seismic behavior of the designed bridge piers is checked by fragility analysis. The fragility results reveal that the probability of damage with the RPOA-2008 is less and perform well comparing to the conventional design pier.

Identification of bridge bending frequencies through drive-by monitoring compensating vehicle pitch detrimental effect

  • Lorenzo Benedetti;Lorenzo Bernardini;Antonio Argentino;Gabriele Cazzulani;Claudio Somaschini ;Marco Belloli
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.305-321
    • /
    • 2022
  • Bridge structural health monitoring with the aim of continuously assessing structural safety and reliability represents a topic of major importance for worldwide infrastructure managers. In the last two decades, due to their potential economic and operational advantages, drive-by approaches experienced growing consideration from researcher and engineers. This work addresses two technical topics regarding indirect frequency estimation methods: bridge and vehicle dynamics overlapping, and bridge expansion joints impact. The experimental campaign was conducted on a mixed multi-span bridge located in Lombardy using a Ford Galaxy instrumented with a mesh of wireless accelerometers. The onboard time series were acquired for a number of 10 passages over the bridge,performed at a travelling speed of 30 km/h, with no limitations imposed to traffic. Exploiting an ad-hoc sensors positioning, pitch vehicle motion was compensated, allowing to estimate the first two bridge bending frequencies from PSD functions; moreover, the herein adopted approach proved to be insensitive to joints disturbance. Conclusively, a sensitivity study has been conducted to trace the relationship between estimation accuracy and number of trips considered in the analysis. Promising results were found, pointing out a clear positive correlation especially for the first bending frequency.

Full-scale bridge expansion joint monitoring using a real-time wireless network

  • Pierredens Fils;Shinae Jang;Daisy Ren;Jiachen Wang;Song Han;Ramesh Malla
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.359-371
    • /
    • 2022
  • Bridges are critical to the civil engineering infrastructure network as they facilitate movement of people, the transportation of goods and services. Given the aging of bridge infrastructure, federal officials mandate visual inspections biennially to identify necessary repair actions which are time, cost, and labor-intensive. Additionally, the expansion joints of bridges are rarely monitored due to cost. However, expansion joints are critical as they absorb movement from thermal effects, loadings strains, impact, abutment settlement, and vehicle motion movement. Thus, the need to monitor bridge expansion joints efficiently, at a low cost, and wirelessly is desired. This paper addresses bridge joint monitoring needs to develop a cost-effective, real-time wireless system that can be validated in a full-scale bridge structure. To this end, a wireless expansion joint monitoring was developed using commercial-off-the-shelf (COTS) sensors. An in-service bridge was selected as a testbed to validate the performance of the developed system compared with traditional displacement sensor, LVDT, temperature and humidity sensors. The short-term monitoring campaign with the wireless sensor system with the internet protocol version 6 over the time slotted channel hopping mode of IEEE 802.15.4e (6TiSCH) network showed reliable results, providing high potential of the developed system for effective joint monitoring at a low cost.

Aerodynamic parameters selection and windbreak mechanism of wind barrier for high-speed railway bridge

  • Yujing Wang;Weiwei Guo;He Xia;Qinghai Guan;Shaoqin Wang
    • Wind and Structures
    • /
    • v.38 no.6
    • /
    • pp.411-425
    • /
    • 2024
  • To investigate the optimal aerodynamic parameters of wind barriers for the T-beam of high-speed railway (HSR) bridge and the wind field of the wind barrier-train-bridge system, the three-component forces of the system and the wind pressure on the vehicle surface were tested and analyzed through the sectional model wind test. The effects of wind velocity, with/without wind barrier, the height of wind barrier, and the air permeability of the wind barrier on the aerodynamic characteristics of the train-bridge system are discussed. Additionally, a CFD numerical model is constructed to evaluate the wind environment of the bridge surface with/without the wind barrier, and the impact of wind barrier on the running safety of vehicles are analyzed. Comprehensively considering the running safety of the train and the wind-resistant stability of the bridge, it is more appropriate to set the wind barrier height H as 3.5 m and the porosity 𝛽 as 30% respectively.

Characteristics of Static Loading and Dynamic Loading Tests for Bridge Capability (교량 내하력 평가를 위한 정적재하시험 및 동적재하시험 특성)

  • Lee, Sang Hun
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.638-649
    • /
    • 2020
  • Purpose: The objective of this study is to evaluate the load carrying capacity of a target bridge structure based on the simple slab bridge of concrete over 20 years of public service. Method: By performing static loading test and dynamic loading test, the displacement, strain, impact factor, and natural frequency values were measured and evaluated through analysis method. Result: The main results of this study are as follows. First, the maximum displacement and maximum strain of S1 were assessed at 2.917 mm and 44.720 𝜇ε( tensile) and -13.760 𝜇ε(compression), respectively, with S2 maximum displacement and maximum strain being 2.100 mm and 4.870 𝜇ε(tensile), respectively. Second, the maximum measured impact factor was 0.191 in section S1 A-A, and the maximum measured impact factor was 0.155 in section S2 C-C. Third, the natural frequency was assessed at 6.086 Hz, and the measurement was found to be within the range of 6.152 Hz to 6.738 Hz. Conclusion: The tested bridge may be evaluated to show good behavior and characteristics for the design load.

Impact Effects of Multi-Girder Steel Bridges Under Various Traffic Conditions (차량하중에 의한 다주형 강판형교의 충격계수 변화에 관한 연구)

  • 김상효;허진영
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.233-240
    • /
    • 1997
  • The study presents the linear dynamic analysis of multi-girder steel bridges under vehicular movement to examine the performance characteristics due to the various structural and loading conditions. The road surface roughness and bridge-vehicle interactions are considered. The road surface profiles for the approaching roadway and bridge decks are generated from power spectral density functions for different road roughness conditions. A new filtering method using the wheel trace is proposed to obtain the more rational bridge-vehicle interactions from the randomly generated road surface. The possible settlement condition between the bridge deck and approaching roadway is also included. The dynamic responses of various bridges designed according to current design practice are examined, in which important structural parameters(such as span length, girder spacing, etc.) are considered systematically. In addition to the basic loading conditions due to a single truck passing on the bridge, the traffic conditions of multi-truck traveling either consecutively on the same lane or side-by-side on the adjacent lanes are also evaluated.

  • PDF

Design Vessel Selection of Maritime Bridges using Collision Risk Allocation Model (충돌위험분배모델을 이용한 해상교량의 설계선박 선정)

  • Lee, Seong-Lo;Lee, Byung Hwa;Bae, Yong-Gwi;Shin, Ho-Sang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.123-134
    • /
    • 2006
  • In this study ship collision risk analysis is performed to determine the design vessel for collision impact analysis of the maritime bridge. Method II which is a probability based analysis procedure is used to select the design vessel for collision impact from the risk analysis results. The analysis procedure, an iterative process in which a computed annual frequency of collapse(AF) is compared to the acceptance criterion, includes allocation method of acceptance criterion of annual frequency of bridge component collapse. The AF allocation by weights seems to be more reasonable than the pylon concentration allocation method because this AF allocation takes the design parameter characteristics quantitatively into consideration although the pylon concentration allocation method brings more economical results when the overestimated design collision strength of piers compared to the strength of pylon is moderately modified. From the assessment of ship collision risk for each bridge pier exposed to ship collision, a representative design vessel for all bridge components is selected. The design vessel size varies much from each other in the same bridge structure depending upon the vessel traffic characteristics.

Evaluation of Impact Factor on Pipe-truss Bridges According to Driving Bimodal Tram (저상굴절차량의 주행에 따른 파이프트러스교의 충격계수 산정)

  • Kim, Hee-Ju;Jun, Myung-Il;Hwang, Won-Sup
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.45-52
    • /
    • 2010
  • This paper estimated the impact factor using the finite element program to confirm the dynamic behavior of new type of bridges constructed by introduction of new vehicles and compared the design criteria about the impact factor applied to domestic as well as each country. The study estimated effects of the impact factor according to pipe truss types modeled as respectively 34m, 44m, 54m and span length. The vehicle models are vehicle for bimodal tram of two axis and three axis which passes on actual bridge and dump truck model proposed by Park Young suk(1997). Each vehicle is estimated the impact factor according to velocity from 10 to 100(km/h) and examined. Also, the study investigated and compared the design regulation of domestic and a foreign country based on the impact factor on span center calculated in accordance with vehicle and span length.

Effect of excitation type on dynamic system parameters of a reinforced concrete bridge

  • Wahab, M.M. Abdel;De Roeck, G.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.4
    • /
    • pp.387-400
    • /
    • 1999
  • Damage detection in civil engineering structures using the change in dynamic system parameters has gained a lot of scientific interest during the last decade. By repeating a dynamic test on a structure after a certain time of use, the change in modal parameters can be used to quantify and qualify damages. To be able to use the modal parameters confidentially for damage evaluation, the effect of other parameters such as excitation type, ambient conditions,... should be considered. In this paper, the influence of excitation type on the dynamic system parameters of a highway prestressed concrete bridge is investigated. The bridge, B13, lies between the villages Vilvoorde and Melsbroek and crosses the highway E19 between Brussels and Antwerpen in Belgium. A drop weight and ambient vibration are used to excite the bridge and the response at selected points is recorded. A finite element model is constructed to support and verify the dynamic measurements. It is found that the difference between the natural frequencies measured using impact weight and ambient vibration is in general less than 1%.

Modeling of a novel power control scheme for Photovoltaic solar system

  • Park, Sung-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.4
    • /
    • pp.417-420
    • /
    • 2008
  • Solar electric systems have very little impact on environment, making them one of the cleanest power-generating technologies available. While they are operating, PV systems produce no air pollution, hazardous waste, or noise, and they require no transportable fuels. In PV system design, the selection and proper installation of appropriately-sized components directly affect system reliability, lifetime, and initial cost. In this research, we have studied the PWM(Pulse Width Modulation) signals. I proposed an efficient photovoltaic power interface circuit incorporated with a DC-DC converter and a sine-pwm control method full-bridge inverter. In grid-connected solar power systems, the DC-DC converter operates at high switching frequency to make the output current a sine wave, whereas the full-bridge inverter operates at low switching frequency which is determined by the ac frequency. Thus, it can reduce the switching losses incurred by the full-bridge inverter. Full-bridge converter is controlled by using microprocessor control method, and its operation is verified through computer aided simulations.