• Title/Summary/Keyword: bridge girder

Search Result 1,301, Processing Time 0.035 seconds

Design analysis of the optimum configuration of self-anchored cable-stayed suspension bridges

  • Lonetti, Paolo;Pascuzzo, Arturo
    • Structural Engineering and Mechanics
    • /
    • 제51권5호
    • /
    • pp.847-866
    • /
    • 2014
  • This paper describes a formulation to predict optimum post-tensioning forces and cable dimensioning for self-anchored cable-stayed suspension bridges. The analysis is developed with respect to both dead and live load configurations, taking into account design constrains concerning serviceability and ultimate limit states. In particular, under dead loads, the analysis is developed with the purpose to calculate the post-tensioning cable forces to achieve minimum deflections for both girder and pylons. Moreover, under live loads, for each cable elements, the lowest required cross-section area is determined, which verifies prescriptions, under ultimate or serviceability limit states, on maximum allowable stresses and bridge deflections. The final configuration is obtained by means of an iterative procedure, which leads to a progressive definition of the stay, hanger and main cable characteristics, concerning both post-tensioning cable stresses and cross-sections. The design procedure is developed in the framework of a FE modeling, by using a refined formulation of the bridge components, taking into account of geometric nonlinearities involved in the bridge components. The results demonstrate that the proposed method can be easily utilized to predict the cable dimensioning also in the framework of long span bridge structures, in which typically more complexities are expected in view of the large number of variables involved in the design analysis.

Evaluation of a DDB design method for bridges isolated with triple pendulum bearings

  • Amiri, Gholamreza Ghodrati;Shalmaee, Mahdi Mohammadian;Namiranian, Pejman
    • Structural Engineering and Mechanics
    • /
    • 제59권5호
    • /
    • pp.803-820
    • /
    • 2016
  • In this study a direct displacement-based design (DDBD) procedure for a continuous deck bridge isolated with triple friction pendulum bearings (TFPB) has been proposed and the seismic demands of the bridge such as isolator's displacement and drift of piers obtained from this procedure evaluated under two-directional near-field ground motions. The structural model used here are continuous, three-span, castin-place concrete box girder bridge with a 30-degree skew which are isolated with 9 different TFPBs. By comparing the results of DDBD method with those of nonlinear time history analysis (NTHA), it can be concluded that the proposed procedure is able to predict seismic demands of similar isolated bridges with acceptable accuracy. Results of NTHA shows that dispersion of peak resultant responses for a group of ground motions increases by increasing their average value of responses. It needs to be noted that the demands parameters calculated by the DDBD procedure are almost overestimated for stiffer soil condition, but there is some underestimation in results of this method for softer soil condition.

Project level에서의 철도 PC Beam교량의 경년열화모델구성 및 유지관리비용 추정 (Time-Dependent Degradation Model and Maintenance Cost of Rail line PC Beam Bridge in Project Level)

  • 권세곤;박미연;도정윤;김두기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.17-22
    • /
    • 2008
  • Construction project have extremely high risk in the process of construction owing to unexpected event, like as design amendment. As a result, owner have to endure enormous extra-cost to control the risk and continue to the project having more higher uncertainty. Also, if the structure is completed, it is needed that the structure is protected and maintained continuously during life cycle time to satisfying original aim of structure itself. LCC analysis to calculate cost of structure alternatives divides into two stage, one is design_LCC and the other is maintenace_LCC. But two stages all is needed in the transition deterioration model to calculate more reasonable LCC analysis. This paper developed the model using analysis of FMS contents and survey from professional about Prestressed concrete beam girder bridge(PC Beam bridge)in railway. The model is focused in project level of PC beam because any condition state information for element level analysis can not get up. This paper is intended to use the developed model in LCC analysis of PC Beam bridge in railway and constitute the foundation to perform more deep study in the near future.

  • PDF

Experimental and numerical study about seismic retrofitting of corrosion-damaged reinforced concrete columns of bridge using combination of FRP wrapping and steel profiles

  • Afshin, Hassan;Shirazi, Mohammad R. Nouri;Abedi, Karim
    • Steel and Composite Structures
    • /
    • 제30권3호
    • /
    • pp.231-251
    • /
    • 2019
  • In the present study, a numerical and experimental investigation has been carried out on the seismic behavior of RC columns of a bridge which damaged under corrosive environments and retrofitted by various techniques including combined application of CFRP sheets and steel profiles. A novel hybrid retrofitting procedure, including the application of inner steel profiles and outer peripheral CFRP sheets, has been proposed for strengthening purpose. Seven large-scale RC columns of a Girder Bridge have been tested in the laboratory under the influence of simultaneous application of constant axial load and the lateral cyclic displacements. Having verified the finite element modeling, using ABAQUS software, the effects of important parameters such as the corrosion percentage of steel rebars and the number of CFRP layers have been evaluated. Based on the results, retrofitting of RC columns of the bridge with the proposed technique was effective in improving some measures of structural performance such as lateral strength degradation and higher energy absorption capability. However, the displacement ductility was not considerably improved whereas the elastic stiffness of the specimens has been increased.

Important measure analysis of uncertainty parameters in bridge probabilistic seismic demands

  • Song, Shuai;Wu, Yuan H.;Wang, Shuai;Lei, Hong G.
    • Earthquakes and Structures
    • /
    • 제22권2호
    • /
    • pp.157-168
    • /
    • 2022
  • A moment-independent importance measure analysis approach was introduced to quantify the effects of structural uncertainty parameters on probabilistic seismic demands of simply supported girder bridges. Based on the probability distributions of main uncertainty parameters in bridges, conditional and unconditional bridge samples were constructed with Monte-Carlo sampling and analyzed in the OpenSees platform with a series of real seismic ground motion records. Conditional and unconditional probability density functions were developed using kernel density estimation with the results of nonlinear time history analysis of the bridge samples. Moment-independent importance measures of these uncertainty parameters were derived by numerical integrations with the conditional and unconditional probability density functions, and the uncertainty parameters were ranked in descending order of their importance. Different from Tornado diagram approach, the impacts of uncertainty parameters on the whole probability distributions of bridge seismic demands and the interactions of uncertainty parameters were considered simultaneously in the importance measure analysis approach. Results show that the interaction of uncertainty parameters had significant impacts on the seismic demand of components, and in some cases, it changed the most significant parameters for piers, bearings and abutments.

모니터링 시스템의 계측자료를 기반으로 한 닐슨아치 교량의 내풍 안정성 평가 (Estimation of Wind Resistance Capacity of Nielsen Arch Bridge Based on Measured Data From Monitoring System)

  • 이덕근;임성순
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제17권3호
    • /
    • pp.56-64
    • /
    • 2013
  • 200m 이하의 아치 교량에서 동적 내풍 안정성은 일반적으로 일본의 Wind Resistant Design Manual for Highway Bridges에 따라 검토된다. 또한 내풍 안정성 검토는 모드 형상에 관계없이 1차 연직 진동수를 적용한다. 일본의 매뉴얼에 따라 설계된 경간장 183m의 닐슨 아치 교량에서 예상치 못한 와류 진동이 발생하였으며 이는 태풍시 교량의 모니터링 시스템에 의해 계측되었다. 본 논문에서는 태풍 발생시에 계측된 풍속, 풍향, 진동 변위와 가속도를 기반으로 닐슨 아치교량의 와류진동 특성을 분석하였다. 분석 결과 1차 연직 진동 모드가 역대칭 형상이고 2차 연직 진동 모드가 대칭 형상인 닐슨 아치교의 경우 와류 진동이 2차 연직 모드에서 지배적이다. 따라서 본 논문에서는 2차 연직 진동 모드가 대칭 형상인 닐슨 아치교의 내풍 안정성 평가시에는 1차 보다 2차 연직 진동 모드가 중요한 설계 요소임을 제시하였다.

Finite element model updating of Kömürhan highway bridge based on experimental measurements

  • Bayraktar, Alemdar;Altunisik, Ahmet Can;Sevim, Baris;Turker, Temel
    • Smart Structures and Systems
    • /
    • 제6권4호
    • /
    • pp.373-388
    • /
    • 2010
  • The updated finite element model of K$\ddot{o}$m$\ddot{u}$rhan Highway Bridge on the Firat River located on the $51^{st}$ km of Elazi$\breve{g}$-Malatya highway is obtained by using analytical and experimental results. The 2D and 3D finite element model of the bridge is created by using SAP2000 structural analyses software, and the dynamic characteristics of the bridge are determined analytically. The experimental measurements are carried out by Operational Modal Analysis Method under traffic induced vibrations and the dynamic characteristics are obtained experimentally. The vibration data are gathered from the both box girder and the deck of the bridge, separately. Due to the expansion joint in the middle of the bridge, special measurement points are selected when experimental test setups constitute. Measurement duration, frequency span and effective mode number are determined by considering similar studies in literature. The Peak Picking method in the frequency domain is used in the modal identification. At the end of the study, analytical and experimental dynamic characteristic are compared with each other and the finite element model of the bridge is updated by changing some uncertain parameters such as material properties and boundary conditions. Maximum differences between the natural frequencies are reduced from 10% to 2%, and a good agreement is found between natural frequencies and mode shapes after model updating.

강재 교량의 노후화에 따른 확률적 보수.보강 주기 추정에 관한 연구 (A Study on the Estimation of Probabilistic Repair.Reinforcement Cycles from Rating Curve of Steel Girder Bridges)

  • 김현배;김용수
    • 한국건설관리학회논문집
    • /
    • 제10권2호
    • /
    • pp.102-110
    • /
    • 2009
  • 교량구조물의 유지관리비용은 크게 증가하는 추세이며 이에 대한 교량의 점검은 많은 비용뿐만 아니라 시간과 노력이 소요된다. 따라서 사전에 교량의 보수 또는 보강이 필요한 시점을 파악하고 그 주기를 예측하는 것은 비용의 절감뿐만 아니라 교량 구조물에 대한 안전성을 확보하는데 크게 도움이 된다. 따라서 본 연구에서는 강박스 도로교량에 대한 신뢰성 있는 보수 또는 보강 주기를 추정하기 위하여 노후화에 따른 기존의 성능등급 곡선을 우선적으로 분석하였다. 이를 바탕으로 보수보강 확률함수를 정의하고 컴퓨터 시뮬레이션을 통하여 확률적으로 보수보강 주기를 추정하는 독자적인 방법을 정립하여 제시 하였다. 또한 결과에 대한 통계적 분석을 통하여 신뢰성을 검증하였으며 강박스 도로교량에 대한 통계자료에서 얻어진 보수 또는 보강 주기와 그 결과가 유사하였다. 본 연구에서 얻어진 결과는 강재 교량 구조물에 대한 신뢰성 있는 보수 또는 보강 주기를 예측하는데 크게 기여할 것으로 판단된다.

Rapid full-scale expansion joint monitoring using wireless hybrid sensor

  • Jang, Shinae;Dahal, Sushil;Li, Jingcheng
    • Smart Structures and Systems
    • /
    • 제12권3_4호
    • /
    • pp.415-426
    • /
    • 2013
  • Condition assessment and monitoring of bridges is critical for safe passenger travel, public transportation, and efficient freight. In monitoring, displacement measurement capability is important to keep track of performance of bridge, in part or as whole. One of the most important parts of a bridge is the expansion joint, which accommodates continuous cyclic thermal expansion of the whole bridge. Though expansion joint is critical for bridge performance, its inspection and monitoring has not been considered significantly because the monitoring requires long-term data using cost intensive equipment. Recently, a wireless smart sensor network (WSSN) has drawn significant attention for transportation infrastructure monitoring because of its merits in low cost, easy installation, and versatile on-board computation capability. In this paper, a rapid wireless displacement monitoring system, wireless hybrid sensor (WHS), has been developed to monitor displacement of expansion joints of bridges. The WHS has been calibrated for both static and dynamic displacement measurement in laboratory environment, and deployed on an in-service highway bridge to demonstrate rapid expansion joint monitoring. The test-bed is a continuous steel girder bridge, the Founders Bridge, in East Hartford, Connecticut. Using the WHS system, the static and dynamic displacement of the expansion joint has been measured. The short-term displacement trend in terms of temperature is calculated. With the WHS system, approximately 6% of the time has been spent for installation, and 94% of time for the measurement showing strong potential of the developed system for rapid displacement monitoring.

Seismic control of high-speed railway bridge using S-shaped steel damping friction bearing

  • Guo, Wei;Wang, Yang;Zhai, Zhipeng;Du, Qiaodan
    • Smart Structures and Systems
    • /
    • 제30권5호
    • /
    • pp.479-500
    • /
    • 2022
  • In this study, a new type of isolation bearing is proposed by combining S-shaped steel plate dampers (SSDs) with a spherical steel bearing, and the seismic control effect of a five-span standard high-speed railway bridge is investigated. The advantages of the proposed S-shaped steel damping friction bearing (SSDFB) are that it cannot only lengthen the structural periods, dissipate the seismic energy, but also prevent bridge unseating due to the restraint effectiveness of SSDs in the large relative displacements between the girders and piers. This study first presents a detailed description and working principle of the SSDFB. Then, mechanical modeling of the SSDFB was derived to fundamentally define its cyclic behavior and obtain key mechanical parameters. The numerical model of the SSDFB's critical component SSD was verified by comparing it with the experimental results. After that, parameter studies of the dimensions and number of SSDs, the friction coefficient, and the gap length of the SSDFBs were conducted. Finally, the longitudinal seismic responses of the bridge with SSDFBs were compared with the bridge with spherical bearing and spherical bearing with strengthened shear keys. The results showed that the SSDFB can not only significantly mitigate the shear force responses and residual displacement in bridge substructures but also can effectively reduce girder displacement and prevent bridge unseating, at a cost of inelastic deformation of the SSDs, which is easy to replace. In conclusion, the SSDFB is expected to be a cost-effective option with both multi-stage energy dissipation and restraint capacity, making it particularly suitable for seismic isolation application to high-speed railway bridges.