• Title/Summary/Keyword: bridge deck slabs

Search Result 59, Processing Time 0.022 seconds

Evaluation of Fatigue Performance of RC Deck Slabs by 80 MPa High-Strength Concrete (80 MPa급 고강도 콘크리트를 적용한 RC 바닥판의 피로 성능 평가)

  • Bae, Jae-Hyun;Hwang, Hoon-Hee;Yoo, Dong-Min;Park, Sung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.4
    • /
    • pp.66-72
    • /
    • 2017
  • Recently, the use of high-strength concrete is increasing due to the trend of constructing high-rise and long span structures. The benefit of using the high-strength concrete is that it increases the durability and strength while it reduces the cross-sectional area of the bridge deck slabs. Moreover, it offers more safety as these bridge deck slabs applying high-strength requires strict structural performance verification. In this study, the fatigue performance of the bridge deck slabs applying 80 MPa high-strength concrete was verified through various experiments. The experimental results showed that the specimens satisfy the conditions of flexural strength, punching shear strength, deflection and cracking. In conclusion, the bridge deck slabs designed by 80 MPa high-strength concrete are enough safe despite of its low thickness.

Punching Strength of Long-Span PSC Deck Slabs (장지간 PSC 바닥판의 정적펀칭강도)

  • Hwang Hoon Hee;Cho Chang Bin;Yoon Hye Jin;Kim Sung Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.467-470
    • /
    • 2005
  • This study was performed to evaluate the static strength of long-span PSC deck slabs. In the previous study, the minimum thickness of PSC deck slabs in the composite two-girder bridge was proposed. To examine the structural behavior and safety of the PSC deck slabs designed in accordance with the proposed minimum thickness, 1/3 scaled PSC deck slabs in the composite two-girder bridge were tested under the static loading. The test results were compared with the predicted values proposed by the code and Matsui. Test results showed ultimate static strength of the PSC deck slabs designed in accordance with the proposed minimum thickness have enough margin of safety. The static failure mode of each test specimen was punching shear mode.

  • PDF

Evaluation of Structural Performance of RC Deck Slabs by High-Strength Concrete (고강도 콘크리트를 적용한 RC 바닥판의 정적 성능 평가)

  • Bae, Jae-Hyun;Hwang, Hoon-Hee;Park, Sung-Yong;Joh, Keun-Hee
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.89-95
    • /
    • 2016
  • Lately, the high-strength concrete is often used to increase the lifespan of bridges. The benefits of using the high-strength concrete are that it increases the durability and strength. On the contrary, it reduces the cross-section of the bridges. This study conducted structural performance tests of the bridge deck slabs applying high-strength concrete. As result of the tests, specimens of bridge deck slabs were destroyed through punching shear. Moreover, the tests exposed that the high-strength concrete bridge deck slabs satisfy the flexural strength and the punching shear strength at ultimate limit state(ULS). Also, limiting deflection of the concrete fulfilled serviceability limit state(SLS) criteria. These results indicated that the bridge deck slabs designed by high-strength concrete were enough to secure the safety factor despite of its low thickness.

Numerical Investigation on Cracking of Bridge Deck Slabs with Latex Modified Concrete Overlays (라텍스 개질 콘크리트 교량 교면 포장부 균열에 대한 수치해석 연구)

  • Choi, Kyoung-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.77-84
    • /
    • 2010
  • Latex modified concrete (LMC) exhibits improved material properties including high tensile strength and durability compared with conventional concrete, and hence LMC has been used as protective layers over the bridge deck slabs to increase their service life with underlying assumption of excellent bond behavior between the LMC overlay and the concrete substrate. In this study, the effect of the primary parameters of the concrete substrate (i.e., shrinkage, stiffness and cracking capacity) as well as the LMC overlay thickness on the probability of cracking of the bridge deck slabs using LMC overlays was investigated by carrying out the finite element analysis that simulated the bond behavior of LMC overlays on normal strength concrete (NSC) and HPC bridge deck slabs. Based on the results of the numerical analysis, it is concluded that the relatively high shrinkage strains and stiffness of HPC slabs can increase its probability of cracking in bridge deck slabs using LMC overlay.

Development of Probabilistic Prediction System for Remaining Life of Reinforced Concrete Bridge Decks (도로교 콘크리트 바닥판의 합리적인 수명 평가 및 예측시스템 개발)

  • 오병환;최영철;이준혁
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.637-640
    • /
    • 2002
  • The deterioration of RC deck slabs has been a serious problem and high portion of budget has been a spent for repair and strengthening of deck slab. The concrete deck slabs are subject to direct application of vehicle loading and accumulation of fatigue damage. Besides, various environmental causes. In this paper, an probabilistic study is carried out to predict exact load effects and structural capacity of deck slab during its service life, and estimate an appropriate remaining life of deck slab. To achieve this purpose the live load model is developed using by influence line including deterioration of deck slab, and deterioration model of bridge deck slab is developed. In addition, the fatigue life of reinforced concrete deck slabs considering corrosion of reinforcement are estimated based on experimental formula. This study will help rational decisions for the management and repair of reinforced concrete deck slabs.

  • PDF

A model for the restrained shrinkage behavior of concrete bridge deck slabs reinforced with FRP bars

  • Ghatefar, Amir;ElSalakawy, Ehab;Bassuoni, Mohamed T.
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.215-227
    • /
    • 2017
  • A finite element model (FEM) for predicting early-age behavior of reinforced concrete (RC) bridge deck slabs with fiber-reinforced polymer (FRP) bars is presented. In this model, the shrinkage profile of concrete accounted for the effect of surrounding conditions including air flow. The results of the model were verified against the experimental test results, published by the authors. The model was verified for cracking pattern, crack width and spacing, and reinforcement strains in the vicinity of the crack using different types and ratios of longitudinal reinforcement. The FEM was able to predict the experimental results within 6 to 10% error. The verified model was utilized to conduct a parametric study investigating the effect of four key parameters including reinforcement spacing, concrete cover, FRP bar type, and concrete compressive strength on the behavior of FRP-RC bridge deck slabs subjected to restrained shrinkage at early-age. It is concluded that a reinforcement ratio of 0.45% carbon FRP (CFRP) can control the early-age crack width and reinforcement strain in CFRP-RC members subjected to restrained shrinkage. Also, the results indicate that changing the bond-slippage characteristics (sand-coated and ribbed bars) or concrete cover had an insignificant effect on the early-age crack behavior of FRP-RC bridge deck slabs subjected to shrinkage. However, reducing bar spacing and concrete strength resulted in a decrease in crack width and reinforcement strain.

Risk Evaluation of Longitudinal Cracking in Concrete Deck of Box Girder Bridge (콘크리트 박스거더 교량 바닥판의 종방향 균열 위험성 정가)

  • Kim, Eui-Sung
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.84-90
    • /
    • 2008
  • The occurrence of longitudinal cracking in concrete deck of box girder bridge is affected by many factors, but the most important factors are the shrinkage and thermal gradient of deck slabs. In this study, therefore, the tensile stresses at the bottom of deck were calculated from the experimental data(autogeneous shrinkage, drying shrinkage, and thermal gradient of deck slab). Also, the possibility of longitudinal cracks at bottom of deck was estimated. For this purpose, full-scale box girder segments have been fabricated and tested. The thermal gradients and shrinkage strains of deck slabs were measured after placement of concrete. Also, analytic program was conducted for the evaluation of longitudinal cracking in bridge deck considering differential shrinkage induced from non-uniform moisture distributions in concrete.

Minimum Thickness of Long-Span RC Deck Slabs for 2-girder Bridges Designed by 80 MPa Concrete (80 MPa급 고강도 콘크리트를 활용한 2거더교 RC 장지간 바닥판의 최소두께)

  • Bae, Jae-Hyun;Yoo, Dong-Min;Hwang, Hoon-Hee;Kim, Sung-Tae
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.97-103
    • /
    • 2014
  • To ensure durability and light weight of bridges, high-strength concrete is required for long-span deck slabs. Such a technology eventually extends the life of bridges and improves the economic efficiency. The results of this study suggests a formula for calculating the minimum thickness of long-span deck slabs built with high strength concrete. The minimum thickness is proposed based on the limit states indicated in the CEB-FIP Model Code and the Korean Highway Bridge Design Code(limit state design). The design compressive strength of concrete used for the study is 80MPa. Moreover, the required thickness for satisfying the flexural capacity and limiting deflection is estimated considering the limit state load combination. The formula for minimum thickness of deck slabs is proposed considering the ultimate limit state(ULS) and the serviceability limit state(SLS) of bridges, and by comparing the Korean Highway Bridge Design Code and similar previous studies. According to the research finding, the minimum thickness of long-span deck slab is more influenced by deflection limit than flexural capacity.

Integral Bridge Using H-pile (H-말뚝을 이용한 일체식교대 교량)

  • 정경자;김성환;유성근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.241-248
    • /
    • 1999
  • The existing bridge with deck joint has many problems during construction and maintenance. To overcome these difficulties, an integral bridge, which is defined as the practice of constructing bridges without deck joints, is proposed in this study. A test bridge with 3 spans of PC beam was selected to verify the function of the bridge and is under construction. Characteristics of integral bridge are followings: $\circled1$ Flexible H-piles under the abutment are installed to accommodate thermal movements of the superstructures of bridge. $\circled2$ PC beam of the superstructure and the abutment are integrated. $\circled3$ The existing approach and relief slabs are applied to minimize the stress transfer occurred from the bridge deck to the pavement. $\circled4$ A cyclic control joint is installed between approach and relief slabs to absorb the thermal movement. $\circled5$ It is used a dual direction bearing which is cheaper than single direction bearing and has a good workability as well. It is also installed a shear block on the top of pier coping to protect the lateral movement caused by temperature change and earthquake.

  • PDF

An Experimental Study on Reinforced Effect Using Double Adhensive Panels in Bridge Deck Slabs (프리케스트판을 이용한 교량상판 단면증설 보강공법에 관한 실험적 연구)

  • 박정기;하경민;지한상;김은겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.791-796
    • /
    • 2000
  • Purpose of this study is to analyze the characteristics and reinforcement effects of restored the RC bridge deck with small precast panel through static load tests and to provide the basic information for the damaged slab decks. In the tests for realizing movement of general RC bridge slabs, 6 samples are prepared and tested. All reinforced samples are restored with 1 or 2-layers precast panels by epoxy mortar. The movement of restored slabs is analyzed and compared with the behavior of non-restored slabs. In result of these tests, tension cracks due to bending moment are show, and after static load test there happens finally a punching shear failure, which is the general type of RC bridge failure. The tests show that restoration of the RC slab results in increasing of loading capacity about 30~50% an restoring panels are stick to slab and moving with slab under loading test.

  • PDF