• Title/Summary/Keyword: bridge deck

Search Result 930, Processing Time 0.027 seconds

Aerostatic load on the deck of cable-stayed bridge in erection stage under skew wind

  • Li, Shaopeng;Li, Mingshui;Zeng, Jiadong;Liao, Haili
    • Wind and Structures
    • /
    • v.22 no.1
    • /
    • pp.43-63
    • /
    • 2016
  • In conventional buffeting theory, it is assumed that the aerostatic coefficients along a bridge deck follow the strip assumption. The validity of this assumption is suspect for a cable-stayed bridge in the construction stages, due to the effect of significant aerodynamic interference from the pylon. This situation may be aggravated in skew winds. Therefore, the most adverse buffeting usually occurs when the wind is not normal to bridge axis, which indicates the invalidity of the traditional "cosine rule". In order to refine the studies of static wind load on the deck of cable-stayed bridge under skew wind during its most adverse construction stage, a full bridge 'aero-stiff' model technique was used to identify the aerostatic loads on each deck segment, in smooth oncoming flow, with various yaw angles. The results show that the shelter effect of the pylon may not be ignored, and can amplify the aerostatic loading on the bridge deck under skew winds ($10^{\circ}-30^{\circ}$) with certain wind attack angles, and consequently results in the "cosine rule" becoming invalid for the buffeting estimation of cable-stayed bridge during erection for these wind directions.

The Effect and Countermeasures of The Vertical Track Settlement Caused by Expand and Contract Behavior of the High-Speed Railway Bridge Girder (고속철도 교량상판의 온도신축작용이 궤도처짐에 미치는 영향과 대책에 관한 연구)

  • 강기동
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.3
    • /
    • pp.283-289
    • /
    • 2004
  • According to continuos welded rails on a bridge, temperature changes bring about the expansion of the bridge deck adding axil forces on the track. Moreover, the ballast on the bridge deck expansion joint is moved due to the bridge deck. If bridge decks are longer, the influence is greater, loosening ballast, causing track irregularities, and deteriorating passengers' comfort. Considering structure of bridge itself and tolerance of track irregularities caused by the loosened ballast on bridges, the maximum length of a deck should be less than 80m, which is the same as the standard of the French railway. In this study, an interaction between the expansion related to the bridge length and irregularity in longitudinal level referring to measurements and maintenance works performed in the high-speed railways was analyzed. This research shows that installation of sliding plate or vertical ballast stopper is not a good option since it is difficult to install. On the other hand, installation of movable fastener or gluing is easy but its influence is insignificant. To conclude, switch tie tamping or manual tamping is more effective than others.

Numerical Research for the Specimen Shape of the RC Slab (철근콘크리트 바닥판의 실험체 형상에 관한 해석적 연구)

  • Park, Chang-Kyu;Yun, Sang-Chul;Chung, Young-Soo;You, Young-Chan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.34-37
    • /
    • 2006
  • Accoarding as a specimen for reinforced concrete bridge deck was designed by each researcher's opinions, its size and shape was variable. Therefore, it makes difficult to comparison with other experiments. In the result of researching papers for design method of reinforced concrete bridge deck specimens, there is hardly found. The target of this study is introduction of the design method of a reinforced concrete bridge deck specimen. The most important point for the specimen design is materialization of the curvature of the real bridge deck. The result of this study appears that the specimens thickness effects highly to fit for the real reinforced concrete bridge deck's curvature.

  • PDF

A Study on the Development of the Wheel Tracking Test and Evaluation Method on Blind Type of Waterproofing Layer (비노출 방수층의 윤하중 시험 및 평가방법 개발에 관한 실험적 연구)

  • Song Je-Young;Eom Deok-Jun;Kwak Kyu-Sung;Oh Sang-Keun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.1 s.19
    • /
    • pp.67-72
    • /
    • 2006
  • There are a lot of problem about waterproofing membrane coating for concrete deck of bridge and waterproofing sheets for concrete of deck of bridge because it couldn't confirm waterproofing's defeat after construction. These problems make a waterproofing material damage and condrete deck of bridge damage. So It needs a lot of money for repair work and reinforcement work. Therefor the structure slab of using waterproofing material protect invasion of water. Also, Concrete deck of bridge need a endurance permeability for the reduction repair payment. In this study, An experimental study on the quality standardization test method waterproofing layer on working of live load.

Thermal Effects of Asphalt Pavement on Steel Deck Arch Bridge (강바닥판 아치교의 아스팔트 포장 열영향)

  • Lee Wan-Hoon;Lee Tae-Yeol;Chung Heung-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.581-588
    • /
    • 2006
  • Now, a long span and special types of steel deck bridges like as suspention or cable state bridges are increasing and Guss Asphalt used in pavement. But Guss Asphalt may caused severe stress and displacement of the bridge as it is treated using very high temperature ranging from $220^{\circ}C\;to\;260^{\circ}C$. In this paper, a series of numerical tests of a steel deck box arch bridge were conducted to estimate the thermal effect of a steel deck bridge according to temperature changes.

  • PDF

A Study on the Blind Type of Waterproofing Layer of Wheel Tracking of Test Method and Valuation on Working of Live Load (이동하중이 작용하는 비노출 방수층의 윤하중 시험방법 및 평가에 관한 연구)

  • Eom Deok-Jun;Seon Yun-Suk;Kwon Si-Won;Oh Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.1-5
    • /
    • 2005
  • There are a lot of problem about waterproofing membrane coating for concrete deck of bridge and waterproofing sheets for concrete of deck of bridge because it couldn't confirm waterproofing's defeat after construction. These problems make a waterproofing material damage and concrete deck of bridge damage. So It needs a lot of money for repair work and reinforcement work. Therefor the structure slab of using waterproofing material protect invasion of water. Also, Concrete deck of bridge need a endurance permeability for the reduction repair payment. In this study, An experimental study on the quality standardization test method waterproofing layer on working of live load

  • PDF

Properties of Plastic Shrinkage Crack Occurrence on The LMC Bridge Deck Overlays (LMC(Latex Modified Concrete) 교면포장에서의 소성수축 균열발생 특성)

  • Park, Sung-Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.265-268
    • /
    • 2004
  • Plastic shrinkage cracking is a major concern for concrete, especially for flat structures as highway pavement, bridge deck slabs, and bridge deck pavement. LMC(Latex Modified Concrete) be used mainly for bridge deck overlays, so occurrence possibility of plastic shrinkage cracking is very high. But LMC is form a close-packed layer of polymer particles in very early time from the time of adds the latex and water. So plastic shrinkage cracking compare with normal concrete is not occur at final setting time. Results indicates that LMC is advantage to prevent occurrence of plastic shrinkage crack and it's possible co construction for bridge deck overlay effectively.

  • PDF

Sensitivity-based BWIM System Using Dynamic Strain Responses of Bridge Deck Plate (교량바닥판의 동적 변형률 응답을 이용한 민감도 기반 BWIM 시스템)

  • Kim, Byeong-Hwa;Park, Min-Seok;Yeo, Keum-Soo;Kim, Soo-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.7
    • /
    • pp.620-628
    • /
    • 2010
  • Using the responses of deck plate, a new bridge weigh-in-motion system has been introduced. The approach includes not only a systematic algorithm for the extraction of moment influence sequence but also a sensitivity-based system identification technique. The algorithm indentifies the influence sequence, the axle loads, and axle location of moving vehicles on a bridge, simultaneously. The accuracy and practicability of the algorithm have been examined experimentally for a folded deck plate on Yongjong Grand suspension bridge. It turns out that the two-dimensional effects of the behavior of deck plate should be considered for further accuracy improvement.

Optimisation of bridge deck positioning by the evolutionary procedure

  • Guan, Hong;Steven, G.P.;Querin, O.M.;Xie, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.6
    • /
    • pp.551-559
    • /
    • 1999
  • This paper presents some simple thinking on an age-old question that given a bridge of a certain span and loading, from the point of view of the structural efficiency, where should the bridge deck be positioned? Generally, this decision is made for other reasons than structural efficiency such as aesthetics and the analyst is often presented with a fait accompli. Using the recently invented Evolutional Structural Optimisation (ESO) method, it is possible to demonstrate that having the deck at different vertical locations can lead to a very different mass and shape for each structural form resembling cable-stayed and cable-truss bridges. By monitoring a performance index which is the function of stresses and volume of discretised finite elements, the best optimised structure can be easily determined and the bridge deck positioning problem can be efficiently solved without resorting to any complex analysis procedures.

Experimental Study on the Determination of Optimum Thickness of RC Deck Slabs by 100, 120 MPa High-Strength Concrete (100, 120 MPa급 고강도 콘크리트 적용 바닥판 적정두께 결정을 위한 실험적 연구)

  • Bae, Jae-Hyun;Hwang, Hoon-Hee;Park, Sung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.38-45
    • /
    • 2018
  • Bridges are structures where safety must be ensured. Generally, the destruction mechanism of bridge deck shows punching shear. Lately, the high-strength concrete is often used to increase the lifespan of bridges. The benefits of using the high-strength concrete are that it increases the durability and strength. On the contrary, it reduces the cross-section of the bridges. This study suggested the optimal thickness of bridge deck with application of high-strength concrete and the study evaluated its structural performance experimentally. The evaluation result shows that 180 mm and 190 mm of thickness are optimal for 100 MPa and 120 MPa high-strength concrete bridge deck respectively.