• 제목/요약/키워드: bridge control

검색결과 1,474건 처리시간 0.025초

A hybrid seismic response control to improve performance of a two-span bridge

  • Heo, Gwanghee;Kim, Chunggil;Jeon, Seunggon;Lee, Chinok;Jeon, Joonryong
    • Structural Engineering and Mechanics
    • /
    • 제61권5호
    • /
    • pp.675-684
    • /
    • 2017
  • In this paper, a hybrid seismic response control (HSRC) system was developed to control bridge behavior caused by the seismic load. It was aimed at optimum vibration control, composed of a rubber bearing of passive type and MR-damper of semi-active type. Its mathematical modeling was driven and applied to a bridge model so as to prove its validity. The bridge model was built for the experiment, a two-span bridge of 8.3 meters in length with the HSRC system put up on it. Then, inflicting the EI Centro seismic load on it, shaking table tests were carried out to confirm the system's validity. The experiments were conducted under the basic structure state (without an MR-damper applied) first, and then under the state with an MR-damper applied. It was also done under the basic structure state with a reinforced rubber bearing applied, then the passive on/off state of the HSRC system, and finally the semi-active state where the control algorithm was applied to the system. From the experiments, it was observed that pounding rather increased when the MR-damper alone was applied, and also that the application of the HSRC system effectively prevented it from occurring. That is, the experiments showed that the system successfully mitigated structural behavior by 70% against the basic structure state, and, further, when control algorithm is applied for the operation of the MR-damper, relative displacement was found to be effectively mitigated by 80%. As a result, the HSRC system was proven to be effective in mitigating responses of the two-span bridge under seismic load.

MR Damper의 준능동 퍼지제어이론을 이용한 교량구조물의 지진응답제어 (Seismic Response Control of Bridge Structures Using Semi-Active Fuzzy Control of MR Damper)

  • 박관순;고현무;옥승용;서충원
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.459-466
    • /
    • 2002
  • In this study magneto-rheological damper, a kind of semi-active device, is used to reduce the response of pier and girder of bridge structure subjected to seismic excitation and as a effective semi-active control method fuzzy control technique considering nonlinear behavior of the damper dynamics. By Numerical simulations of a nine span continuous bridge system subjected to various earthquakes, fuzzy control technique is compared with existing clipped optimal control technique in control performance which reduces displacement of pier and girder simultaneously. In the comparison of the control performance within a control force limit, it is confirmed that presented fuzzy control technique more efficiently reduce the pier and girder displacement than clipped optimal control technique based on optimal control theory.

  • PDF

3차원 모델 기반의 미적 교각 설계 및 시공 기술 개발 (Development of Creative Design and Construction Methods of Bridge Piers using 3D Model)

  • 이상용;당고손;심창수
    • 한국BIM학회 논문집
    • /
    • 제5권2호
    • /
    • pp.12-18
    • /
    • 2015
  • Bridge piers typically have circular or rectangular shapes without decorative design. Prefabrication for accelerated construction has been widely adopted in bridge structures. Cost for steel formwork is a main restriction of creative irregular shapes. 3D modelling techniques allow creative design of columns and 3D printing provides possibility to minimize the fabrication cost. In this paper, 3D design process of bridge piers was suggested by converting 2D picture into 3D decorative shape. Formwork design using 3D printed panels was also proposed and mock-up tests were conducted. Precast columns need accurate geometry control from fabrication to assembly. Laser scanning and geometry control devices were adopted. Through the digitalized process of design, fabrication and assembly, creative design of structures can be realized in reasonable cost range.

부한 환류모드를 갖는 새로운 반 브리지 공진형인버터 (A New Resonant H/B Inverter Having Load Freewheeling Modes)

  • 연재을;조규민;오원석;김희준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.153-156
    • /
    • 2004
  • This paper presents a new circuit topology of the half-bridge resonant inverter. As the proposed half-bridge inverter can be operated in the load freewheeling modes, pulse width modulation (PWM) control method can be used for the output power control. The proposed half-bridge inverter should keep unity output displacement factor under the load-impedance varying conditions, if a new PWM control scheme based on the resonant frequency tracking algorithm is adopted. In this paper, electrical characteristics, and losses analysis of the proposed half-bridge resonant inverter are described. Simulation and experimental results of the prototype experimental setup to verify the validity of the proposed half-bridge resonant inverter are presented and discussed.

  • PDF

이중 결합 Full-Bridge 방식 직렬 공진형 인버터 (A Double Coupling Full-Bridge Configuration Series Resonant Inverter)

  • 배영호
    • 전력전자학회논문지
    • /
    • 제9권4호
    • /
    • pp.326-333
    • /
    • 2004
  • 본 논문에서는 Power-MOSFET를 통해 L및 C로 링크된 2조의 공진형 Full-bridge 인버터 회로를 다중 결합하여 대용량 전력변환장치의 소자에 인가되는 전압이나 부하전류를 분산 제어하는 기법을 제안하고 있다. 이 방식은 두 조의 인버터가 시분할로 구동되기 때문에 각 인버터의 독립된 출력이 부하단에서 합성되어 전력이 공급된다. 출력제어 기법은 시분할 합성법을 사용하고 이에 따른 인버터의 회로동작 모드를 분석하고 해석하였으며, 시뮬레이션을 통한 이론적 해석결과를 검정하고 이를 실험을 통해 비교 고찰하였다.

Cascaded H-bridge PWM 멀티레벨인버터의 스위칭 손실 저감을 위한 효율적인 스위칭 패턴 (Efficient Switching Pattern to Decrease Switching Losses in Cascaded H-bridge PWM Multilevel Inverter)

  • 정보창;김선필;김광수;박성준;강필순
    • 전기학회논문지
    • /
    • 제62권4호
    • /
    • pp.502-509
    • /
    • 2013
  • It presents an efficient switching pattern, which expects a reduction of switching losses in a cascaded H-bridge PWM multilevel inverter. By the proposed switching scheme, the lower H-bridge module operates at low frequency of 60[Hz] because it assigns to transfer most load power. The upper H-bridge module operates at high frequency of PWM switching to improve THD of output voltage. The proposed switching pattern applies to cascaded H-bridge multilevel inverter with PD, APOD, bipolar, and unipolar switching methods. By computer-aided simulations, we verify the validity of the proposed switching scheme. Finally, we prove that the proposed PD and APOD switching patterns are better than those of the conventional one in efficiency.

냉장고의 선형압축기 구동을 위한 단상 하프브리지 인버터 시스템에서 직류단 불평형 보상에 관한 연구 (DC Voltage Balancing Control of Half-Bridge PWM Inverter for Liniear Compressor of Refrigerator)

  • 김호진;김형진;김동윤;김장목
    • 전력전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.256-262
    • /
    • 2017
  • This paper presents the control algorithm of a single-phase AC/DC/AC PWM converter for the linear compressor of a refrigerator. The AC/DC/AC converter consists of a full-bridge PWM converter for the control of the input power factor and a half-bridge PWM inverter for the control of the single-phase linear compressor. At the DC-link of this topology, two capacitors are connected in series. These DC-link voltages must be balanced for safe operation. Thus, a new control method of DC voltage balancing for the half-bridge PWM inverter is proposed. The balancing algorithm uses the Integral-Proportional controller and inserts the DC-offset current at the Proportional-Resonant current controller of the inverter to solve the DC-link unbalanced voltages between the two capacitors. The proposed algorithm can be easily implemented without much computation and additional hardware circuit. The usefulness of the proposed algorithm is verified through several experiments.

Neural Network Active Control of Structures with Earthquake Excitation

  • Cho Hyun Cheol;Fadali M. Sami;Saiidi M. Saiid;Lee Kwon Soon
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권2호
    • /
    • pp.202-210
    • /
    • 2005
  • This paper presents a new neural network control for nonlinear bridge systems with earthquake excitation. We design multi-layer neural network controllers with a single hidden layer. The selection of an optimal number of neurons in the hidden layer is an important design step for control performance. To select an optimal number of hidden neurons, we progressively add one hidden neuron and observe the change in a performance measure given by the weighted sum of the system error and the control force. The number of hidden neurons which minimizes the performance measure is selected for implementation. A neural network was trained for mitigating vibrations of bridge systems caused by El Centro earthquake. We applied the proposed control approach to a single-degree-of-freedom (SDOF) and a two-degree-of-freedom (TDOF) bridge system. We assessed the robustness of the control system using randomly generated earthquake excitations which were not used in training the neural network. Our results show that the neural network controller drastically mitigates the effect of the disturbance.

스카이브릿지를 이용한 RC 주거용 건물의 진동제어 (Vibration Control of RC Residential Building Structure Using Sky-Bridge)

  • 안상경;오정근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.450-453
    • /
    • 2006
  • Coupling adjacent building with supplemental damping devices is a developing method of reduced structural response due to wind and seismic excitations. The philosophy is to allow structures, vibrating at different frequencies, to exert control forces upon one another to reduce the overall responses of the system. This paper studies the effect of installing vibration control devices of two high rise building structures(49 stories and 42 stories) connected by sky-bridge. According to the analysis results the use of sky-bridge can be effective in increasing damping ratio of the system.

  • PDF

Performance comparison of passive control schemes for the numerically improved ASCE cable-stayed bridge model

  • Domaneschi, Marco;Martinelli, Luca
    • Earthquakes and Structures
    • /
    • 제3권2호
    • /
    • pp.181-201
    • /
    • 2012
  • The benchmark on the ASCE cable-stayed bridge has gathered since its proposal the interest of many specialists in the field of the structural control and the dynamic response of long span bridges. Starting from the original benchmark statement in the MATLAB framework, a refined version of the bridge model is developed in the ANSYS commercial finite element environment. A passive structural control system is studied through non linear numerical analyses carried out in time domain for several seismic realizations in a multiple support framework. An innovative electro-inductive device is considered. Its positive performance is compared with an alternative version considering traditional metallic dampers.