• Title/Summary/Keyword: bridge construction

Search Result 1,919, Processing Time 0.026 seconds

Assessment of environmental effects in scour monitoring of a cable-stayed bridge simply based on pier vibration measurements

  • Wu, Wen-Hwa;Chen, Chien-Chou;Shi, Wei-Sheng;Huang, Chun-Ming
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.231-246
    • /
    • 2017
  • A recent work by the authors has demonstrated the feasibility of scour evaluation for Kao-Ping-Hsi Cable-Stayed Bridge simply based on ambient vibration measurements. To further attain the goal of scour monitoring, a key challenge comes from the interference of several environmental factors that may also significantly alter the pier frequencies without the change of scour depth. Consequently, this study attempts to investigate the variation in certain modal frequencies of this bridge induced by several environmental factors. Four sets of pier vibration measurements were taken either during the season of plum rains, under regular summer days without rain, or in a period of typhoon. These signals are analyzed with the stochastic subspace identification and empirical mode decomposition techniques. The variations of the identified modal frequencies are then compared with those of the corresponding traffic load, air temperature, and water level. Comparison of the analyzed results elucidates that both the traffic load and the environmental temperature are negatively correlated with the bridge frequencies. However, the traffic load is clearly a more dominant factor to alternate the identified bridge deck frequency than the environmental temperature. The pier modes are also influenced by the passing traffic on the bridge deck, even though with a weaker correlation. In addition, the variation of air temperature follows a similar tendency as that of the passing traffic, but its effect on changing the bridge frequencies is obviously not as significant. As for the effect from the alternation of water level, it is observed that the frequency baselines of the pier modes may positively correlate with the water level during the seasons of plum rains and typhoon.

Behavior on Vertical Stiffener Length of Steel Box Girder Support Diaphragm (강상자형 다이아프램의 수직보강재 길이에 따른 거동)

  • Kim, Jong Ryeol;Kim, Woo Jun;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.489-497
    • /
    • 2003
  • Bridge has to be long-spanned and of simple structure, considering the social environment. As a result of this trend in bridge construction, it is important for the sake of economical efficiency to improve the structural system and increase the life cycle of a bridge. To attain these goals in constructing a steel bridge, the detail analyses based on real structure must be performed. In the steel structure bridge, the parts that are a main focus of interest are the diaphragm and the vertical bracing of the steel box girder support. This study observed the behavior of the diaphragms on the bearings of a closed section steel box girder bridge support, as dead load was increased. Stress variation of the support diaphragms in a steel box girder was considered, and both experimental test and structural analyses were performed to verify the behavior of a composite steel box girder bridge under repair or maintenance.

An Experimental Study on the Girder-Abutment Connection for the Steel-Concrete Composite Rigid-Frame Bridge Integrated with PS Bars (PS 강봉으로 일체화된 강합성 라멘교의 거더-교대 접합부의 거동에 관한 실험적 연구)

  • Lee, Sang-Yoon;Ahn, Young-Soo;Oh, Min-Ho;Chung, Jee-Seung;Yang, Sung-Don
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.453-463
    • /
    • 2012
  • Steel-concrete composite rigid-frame bridge is a type of integral bridge having advantages in bridge maintenance and structural efficiency from eliminating expansion joints and bridge supports, the main problems in bridge maintenance. The typical steel-concrete composite rigid-frame bridge has the girder-abutment connection where a part of its steel girder is embedded in abutment for integrity. However, the detail of typical girder-abutment connection is complex and increases the construction cost, especially when a part of steel girder is embedded. Recently, a new type of bridge was proposed to compensate for the disadvantages of complex details and cost increase. The compensation are expected to improve efficiency of construction by simplifying the construction detail of the girder-abutment connection. In this study, a static load test has been carried out to examine the behavior of the girder-abutment connection using real-scale specimens. The results of the test showed that the girder-abutment connection of proposed girder bridge has sufficient flexural capacity and rebars to control concrete crack should be placed on the top of abutment.

Analysis Model of the Stress Ribbon Bridge considering the Construction Stage (시공단계가 고려된 스트레스 리본 교량의 해석 모델)

  • Yun, Kyung-Min;Kim, Kee-Dong;Lee, Chin-Ok;Lim, Nam-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6898-6905
    • /
    • 2014
  • A stress ribbon bridge is a PSC structure that behaves as a reverse arch structure due to post-tensioned thin deck of the catenary type. In foreign countries, the stress ribbon bridge is recognized as the minimum destruction of nature and beautiful bridge, and has many construction examples as pedestrian and car bridges. On the other hand, there have been few studies in Korea. In this study, the FE Analysis model was established for different construction stages considering the nonlinear and time-dependent behaviors. The FE model was verified by a comparison with the numerical results and the behavior was analyzed for the different construction stages.

Test for the influence of socket connection structure on the seismic performance of RC prefabricated bridge piers

  • Yan Han;Shicong Ding;Yuxiang Qin;Shilong Zhang
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.89-97
    • /
    • 2023
  • In order to obtain the impact of socket connection interface forms and socket gap sizes on the seismic performance of reinforced concrete (RC) socket prefabricated bridge piers, quasi-static tests for three socket prefabricated piers with different column-foundation connection interface forms and reserved socket gap sizes, as well as to the corresponding cast-in-situ reinforced concrete piers, were carried out. The influence of socket connection structure on various seismic performance indexes of socket prefabricated piers was studied by comparing and analyzing the hysteresis curve and skeleton curve obtained through the experiment. Results showed that the ultimate failure mode of the socket prefabricated pier with circumferential corrugated treatment at the connection interface was the closest to that of the monolithic pier, the maximum bearing capacity was slightly less than that of the cast-in-situ pier but larger than that of the socket pier with roughened connection interface, and the displacement ductility and accumulated energy consumption capacity were smaller than those of socket piers with roughened connection interface. The connection interface treatment form had less influence on the residual deformation of socket prefabricated bridge piers. With the increase in the reserved socket gap size between the precast pier column and the precast foundation, the bearing capacity of the prefabricated socket bridge pier component, as well as the ductility and residual displacement of the component, would be reduced and had unfavorable effect on the energy dissipation property of the bridge pier component.

Quasi-static test of the precast-concrete pile foundation for railway bridge construction

  • Zhang, Xiyin;Chen, Xingchong;Wang, Yi;Ding, Mingbo;Lu, Jinhua;Ma, Huajun
    • Advances in concrete construction
    • /
    • v.10 no.1
    • /
    • pp.49-59
    • /
    • 2020
  • Precast concrete elements in accelerated bridge construction (ABC) extends from superstructure to substructure, precast pile foundation has proven a benefit for regions with fragile ecological environment and adverse geological condition. There is still a lack of knowledge of the seismic behavior and performance of the precast pile foundation. In this study, a 1/8 scaled model of precast pile foundation with elevated cap is fabricated for quasi-static test. The failure mechanism and responses of the precast pile-soil interaction system are analyzed. It is shown that damage occurs primarily in precast pile-soil interaction system and the bridge pier keeps elastic state because of its relatively large cross-section designed for railways. The vulnerable part of the precast pile with elevated cap is located at the embedded section, but no plastic hinge forms along the pile depth under cyclic loading. Hysteretic curves show no significant strength degradation but obvious stiffness degradation throughout the loading process. The energy dissipation capacity of the precast pile-soil interaction system is discussed by using index of the equivalent viscous damping ratio. It can be found that the energy dissipation capacity decreases with the increase of loading displacement due to the unyielding pile reinforcements and potential pile uplift. It is expected to promote the use of precast pile foundation in accelerated bridge construction (ABC) of railways designed in seismic regions.

Construction Processing Analysis of Domestic Bridges Crossing Navigable Waterways and Improvements (국내 항만횡단 해상교량의 건설 절차 분석 및 개선방안)

  • Lee, Yun-Sok;Cho, Ik-Soon;Park, Young-Soo;Park, Jin-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.2
    • /
    • pp.119-125
    • /
    • 2009
  • Recently the construction of bridges crossing navigable waterways is being promoted aiming at expanding social infrastructure and optimizing the overland routes through private investment. The construction, however, tends to focus on more the commercial requirements than the marine safety and efficient port management that it has a big risk not only to fail in ensuring the safety of ship traffic, but also to muse some severe conflicts between the parties concerned. These problems result from the lacking of standards about the design guidelines and discussing process considering the marine traffic safety when designing bridges. This research attempts to show the problems mused by bridge construction and suggest the standard discussing process through the survey and process analysis on Kwangyang Bridge and Incheon Bridge.

  • PDF

A Research on how to turn Object oriented Database of civil materials to practical use (객체지향 Data Base를 이용한 토목자재 정보의 이용방안 연구)

  • Kwon, Oh-Yong;Han, Chung-Han;Kim, Do-Keun;Jo, Chan-Won
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.708-711
    • /
    • 2008
  • This study is intended to build research for ways to utilize material information in the design and working business for public works. The contents and results of this study can be classified into object-oriented DB application to bridge construction and object-oriented DB utilization of civil material information. First, application of object-oriented DB to bridge construction 1) constructs the work unit of classified work table as an object(Each object constructs material information on the statement of quantity calculation as data), 2) constructs object-oriented DB for superstructure and substructure of PSC Beam bridge, 3) leads to the research for ways to utilize materials by developing 3D bridge prototype with REVIT structure. Secondly, ways to utilize object-oriented DB for civil material information identified the possibility for utilizing it in making 2D drawings for design work, preparing materials list, analyzing structure for working businesses, selecting and purchasing materials, managing process and maintaining. It is suggested that the results of this study should be applied to all bridge constructions through test-bed and additional studies so as to secure the credibility of the results of this study.

  • PDF

Design of Large-scale Drilled Shaft (대구경 현장타설말뚝의 설계 사례)

  • Im, Chul-O;Choi, Young-Seok;Kwak, Ki-Seok;Jang, Hak-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.545-553
    • /
    • 2009
  • A lot of long-span marine bridge, which connects land to island or island to island, are being designed and constructed lately in south-west coast in South Korea. In the past, caisson foundations in marine were mainly adopted in construction and stability aspect, however, nowadays with development of pile construction technology, drilled shaft foundations are mainly adopted. As the long span cable stayed bridge and suspension bridge applied with lots of loads are being designed, the scale of pile foundations are getting larger. As the construction cost of substructure including foundation in marine bridges is too high, the appropriate evaluation of the axial bearing capacity of pile becomes a core factor to decide the construction cost of foundation if the drilled shaft is adopted as foundation type of bridge. The evaluation values of skin friction and end bearing capacity of drilled shaft in weathered rock suggested in south Korea are only to introduce the foreign specifications, and most of them are designed in a kind of hard soil layer. Also the allowable load of pile section is less than the expected bearing capacity of pile in the soil condition since the allowable capacity of pile is undervalued. Recently in order to improve this factor the bi-axial hydraulic load test of pile was taken, the data of load transfer analysis of pile, unit of skin friction and end bearing capacity are accumulated. In our country, the design of piles are made with ASD, however, LRFD considering service, strength and extreme state was adopted in Incheon Grand Bridge implemented with BTL, and the research to systematize the resistance coefficient appropriate at home country are being progressed.

  • PDF