• Title/Summary/Keyword: bridge beam

검색결과 618건 처리시간 0.027초

프리스트레스트 콘크리트 보 단면의 최적설계 (Optimization of Prestressed Concrete Beam Section)

  • 조선규;최외호
    • 콘크리트학회논문집
    • /
    • 제12권4호
    • /
    • pp.91-101
    • /
    • 2000
  • As the computer related technology evolves a study for a practical use of real structure as well as its hteory for optimum design has been greatly advanced. But the study on optimum design of pre-stressed concrete beam(PSC-beam) bridge for the construction of national roads and highways in Korea is not sufficient. Since a standard section for the PSC-beam is proposed, it is practically used in designing the PSC-beam. It is noticed that the section using the current standard PSC-beam design to be an over-designed with its surplus safety factor. Therefore, it is necessary to consider economical PSC-beam section which automatically satisfies all requirement of design specifications. Thus, in this study, the optimum design methods of PSC-beam are carried out using the gradient-based search method and global search method. As a result of the optimum design method, it was confirmed that the design of PSC-beam has a serious properties to non-linearity and discontinuity. And the section that in economical and efficinet design methods than the current standard design method is proposed.

보 구조물에서 변형률 계측 데이터를 활용한 디지털트윈 모델 구현 (Digital Twin Model of a Beam Structure Using Strain Measurement Data)

  • 한만석;신수봉;문태욱;김다운;이종한
    • 한국BIM학회 논문집
    • /
    • 제9권3호
    • /
    • pp.1-7
    • /
    • 2019
  • Digital twin technology has been actively developed to monitor and assess the current state of actual structures. The digital twin changes the traditional observation method performed in the field to the real-time observation and detection system using virtual online model. Thus, this study designed a digital twin model for a beam and examined the feasibility of the digital twin for bridges. To reflect the current state of the bridge, model updating was performed according to the field test data to construct an analysis model. Based on the constructed bridge analysis model, the relationship between strain and displacement was used to represent a virtual model that behaves in the same way as the actual structure. The strain and displacement relationship was expressed as a matrix derived using an approximate analytical theory. Then, displacements can be obtained using the measured data obtained from strain sensors installed on the bridge. The coordinates of the obtained displacements are used to construct a virtual digital model for the bridge. For verification, a beam was fabricated and tested to evaluate the digital twin model constructed in this study. The displacements obtained from the strain and displacement relationship agrees well with the actual displacements of the beam. In addition, the displacements obtained from the virtual model was visualized at the locations of the strain sensor.

Three-dimensional finite element modeling of a long-span cable-stayed bridge for local stress analysis

  • Lertsima, Chartree;Chaisomphob, Taweep;Yamaguchi, Eiki
    • Structural Engineering and Mechanics
    • /
    • 제18권1호
    • /
    • pp.113-124
    • /
    • 2004
  • The information on local stress acting in a bridge is required in many occasions such as fatigue assessment. The analysis by beam elements cannot yield this class of information adequately, while the finite element modeling of an entire long-span bridge by shell elements is impractical. In the present study, the hybrid modeling is tried out: only part of a bridge in which the point of interest is located is discretized by shell elements and the remaining part is modeled by beam elements. By solving a simple box girder problem, the effectiveness of this approach is discussed. This technique is then applied to the Rama IX Bridge for local stress evaluation. The numerical results compare very well with the results of a full-scale static loading test. The present research thus offers a practical yet accurate technique for the stress analysis of a long-span cable-stayed bridge.

단면 수정계수를 이용한 이동 하중에 따른 트러스 연결부의 응력해석 (Stress Analysis of Truss Connection subjected to Moving Load Using Section Properties Factor)

  • 이상호;배기훈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.354-361
    • /
    • 2002
  • This paper propose section properties factor to generate stress history for fatigue analysis and safety inspection of steel bridge. A methodology is described for the computation of numerical stress histories in the steel truss bridge, caused by the vehicles using section properties factor. The global 3-D beam model of bridge is combined with the local shell model of selected details. Joint geometry is introduced by the local shell model. The global beam model takes the effects of joint rigidity and interaction of structural elements into account. Connection nodes in the global beam model correspond to the end cross-section centroids of the local shell model. Their displacements are interpreted as imposed deformations on the local shell model. The load cases fur the global model simulate the vertical unit force along the stringers. The load cases fer the local model are imposed unit deformations. Combining these, and applying vehicle loads, numerical stress histories are obtained. The method is illustrated by test load results of an existing bridge.

  • PDF

Damage assessment of a bridge based on mode shapes estimated by responses of passing vehicles

  • Oshima, Yoshinobu;Yamamoto, Kyosuke;Sugiura, Kunitomo
    • Smart Structures and Systems
    • /
    • 제13권5호
    • /
    • pp.731-753
    • /
    • 2014
  • In this study, an indirect approach is developed for assessing the state of a bridge on the basis of mode shapes estimated by the responses of passing vehicles. Two types of damages, i.e., immobilization of a support and decrease in beam stiffness at the center, are evaluated with varying degrees of road roughness and measurement noise. The assessment theory's feasibility is verified through numerical simulations of interactive vibration between a two-dimensional beam and passing vehicles modeled simply as sprung mass. It is determined that the damage state can be recognized by the estimated mode shapes when the beam incurs severe damage, such as immobilization of rotational support, and the responses contain no noise. However, the developed theory has low robustness against noise. Therefore, numerous measurements are needed for damage identification when the measurement is contaminated with noise.

가로거더공법에서 주형의 연속화 시점에 따른 주형의 거동 (Behavior of Main Girder in Continuous Girder System using Cross Girder Method)

  • 박정웅;서원주;이선호
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.533-536
    • /
    • 2008
  • H 형강은 시공성과 유지관리의 간편성으로부터 교량의 주형과 가설 구조물에 사용하는 경우가 증가하고 있다. 특히 H형강을 교량에 적용하는 경우 지점부의 부모멘트에 의해 지간장 20m 내외가 한계이고, 기존공법의 경우 콘크리트를 사용한 공법에 비해 큰 장점을 가지고 있지 못한다. 따라서 본 연구에서는 교량의 장지간화가 가능한 가로거더공법을 개발하여 기존의 강교량의 문제점을 극복한 장지간 H형강 강합성 교량을 개발하고자한다. 여기서는 수치해석적 방법으로 주형과 주형이 연속화되는 시점을 변화시켜 내하력을 계산하고, 그 결과로 부터 합리적인 가로거더공법을 개발하고자한다.

  • PDF

2개의 거더가 적용된 강플레이트 거더교의 가로보 거동에 관한 연구 (A Study on the Behavior of Cross Beams in Two-I girder steel bridges)

  • 경갑수;권순철;박경진;전준창
    • 대한토목학회논문집
    • /
    • 제26권3A호
    • /
    • pp.523-532
    • /
    • 2006
  • 2거더 강교량의 건설 효율성 등을 위해서는 구조형식, 특히 가로보를 포함하는 구조계의 거동평가에 기초한 효율적이고 합리적인 설계기준 등의 제시가 필요할 것으로 생각된다. 따라서, 본 연구에서는 2거더 강교량에서 하중전달 역할을 하는 가로보의 위치, 간격 및 강성의 영향인자가 2거더 강교량의 거동 특성에 미치는 영향을 조사하고 합리적인 가로보 배치 기준을 제시하고자 한다. 기존 2거더 강교량을 대상교량으로 선정하고 가로보 특성을 적절하게 평가할 수 있는 몇가지 구조 모델링에 대해 구조해석을 실시한 결과, 가로보의 모델은 국부적인 응력집중과 바닥판의 하중분배 효과를 고려할 수 있는 쉘요소 및 솔리드 요소가 적합할 것으로 판단된다. 이러한 쉘요소 및 솔리드 요소를 사용하여 가로보의 배치 위치, 배치 간격 및 강성을 변수로 구조해석을 실시하여 효율적인 가로보 설계기준을 제시하였다.

Effect of post weld treatment on cracking behaviors of beam-column connections in steel bridge piers

  • Jia, Liang-Jiu;Ge, Hanbin;Suzuki, Toshimitsu
    • Steel and Composite Structures
    • /
    • 제17권5호
    • /
    • pp.687-704
    • /
    • 2014
  • A great number of moment-resisting steel structures collapsed due to ductile crack initiation at welded beam-column connections, followed by explosive brittle fracture in the Kobe (Hyogoken-Nanbu) earthquake in 1995. A series of experimental and numerical studies on cracking behaviors of beam-column connections in steel bridge piers were carried out by the authors' team. This paper aims to study the effect of post weld treatment on cracking behaviors of the connections during a strong earthquake event. Experiments of three specimens with different weld finishes, i.e., as-welded, R-finish, and burr grinding, were conducted. The experimental results indicate that the instants of ductile crack initiation are greatly delayed for the specimens with R-finish and burr grinding finishes compared with the as-welded one. The strain concentration effect in the connection is also greatly reduced in the specimens with post weld treatment compared with the as-welded one, which was also verified in the tests.

Rapid assessment of suspension bridge deformation under concentrated live load considering main beam stiffness: An analytical method

  • Wen-ming Zhang;Jia-qi Chang;Xing-hang Shen;Xiao-fan Lu;Tian-cheng Liu
    • Structural Engineering and Mechanics
    • /
    • 제88권1호
    • /
    • pp.53-65
    • /
    • 2023
  • With the gradual implementation of long-span suspension bridges into high-speed railway operations, the main beam's bending stiffness contribution to the live load response permanently grows. Since another critical control parameter of railway suspension bridges is the beam-end rotation angle, it should not be ignored by treating the main beam deflection as the only deformation response. To this end, the current study refines the existing method of the main cable shape and simply supported beam bending moment analogy. The bending stiffness of the main beam is considered, and the main beam's analytical expressions of deflection and rotation angle in the whole span are obtained using the cable-beam deformation coordination relationship. Taking a railway suspension bridge as an example, the effectiveness and accuracy of the proposed analytical method are verified by the finite element method (FEM). Comparison of the results by FEM and the analytical method ignoring the main beam stiffness revealed that the bending stiffness of the main beam strongly contributed to the live load response. Under the same live load, as the main beam stiffness increases, the overall deformation of the structure decreases, and the reduction is particularly noticeable at locations with original larger deformations. When the main beam stiffness is increased to a certain extent, the stiffening effect is no longer pronounced.

일체형 가로보를 이용한 임시교량의 구조적 거동특성 (The Characteristics of Structural Behavior of Temporary Bridge Using Continuous Cross Beam)

  • 주형중;이영근;이동혁;윤순종
    • 한국강구조학회 논문집
    • /
    • 제24권5호
    • /
    • pp.559-569
    • /
    • 2012
  • 기존 임시교량은 대부분 거더의 횡-비틀림좌굴을 방지하고 시공의 효율성을 확보하기 위해 가로보를 설치하고 있다. 이 가로보는 볼트로 연결되며, 중력방향 하중에 대한 저항성능이 매우 작은 것으로 평가되고 있다. 그러나 최근 일체화된 가로보를 사용함으로써 가로보를 하중저항요소로 이용한 임시교량이 최근 개발된 바 있다. 이 연구는 새롭게 개발된 임시교량에 대한 구조적 거동 및 하중전달능력을 실험 및 구조해석 등을 통해 조사, 분석하였다. 일체로 연속된 가로보를 이용한 임시교량은 가로보의 휨강성을 통해 하중을 인접거더로 분산하여 거더에 발생하는 최대휨응력을 감소시키고, 거더의 휨강성을 증대시키는 것으로 확인되어 장경간 임시교량에서도 유리할 것으로 판단된다.