• Title/Summary/Keyword: bridge acceleration

Search Result 328, Processing Time 0.029 seconds

Seismic Behavior of a Bridge with Pile Bent Structures Subjected to Multi-Support Excitation (다지점 가진에 의한 단일형 현장타설말뚝 교량의 지진거동)

  • Sun, Chang-Ho;Ahn, Sung-Min;Kim, Ick-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.425-434
    • /
    • 2019
  • It is important to ensure the seismic safety of pile-bent bridges constructed in areas with thick soft ground consisting of various soil layers against seismic motion in these layers. In this study, several synthetic seismic waves that are compatible with the seismic design spectrum for rock sites were generated, and the ground acceleration history of each soil layer was obtained based on ground analyses. Using these acceleration histories, each soil layer was modeled using equivalent linear springs, and multi-support excitation analyses were performed using the input motion obtained at each soil layer. Due to the nonlinear behavior of the soft soil layers, the intensity of the input ground motion was not amplified, which resulted in the elastic behavior of the bridge. In addition, inputting the acceleration history obtained from a particular layer simultaneously into all the ground springs reduced the response. Therefore, the seismic performance of this type of bridge might be overestimated if multi-excitation analysis is not performed.

Highway bridge live loading assessment and load carrying capacity estimation using a health monitoring system

  • Moyo, Pilate;Brownjohn, James Mark William;Omenzetter, Piotr
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.609-626
    • /
    • 2004
  • The Land Transport Authority of Singapore has a continuing program of highway bridge upgrading, to refurbish and strengthen bridges to allow for increasing vehicle traffic and increasing axle loads. One subject of this program has been a short span bridge taking a busy highway across a coastal inlet near a major port facility. Experiment-based structural assessments of the bridge were conducted before and after upgrading works including strengthening. Each assessment exercise comprised two separate components; a strain and acceleration monitoring exercise lasting approximately one month, and a full-scale dynamic test carried out in a single day. This paper reports the application of extreme value statistics to estimate bridge live loads using strain measurements.

Acceleration Estimation of a Steel Plate Girder Bridge using Multiplexed FBG Sensors (다중화된 광섬유센서를 이용한 강철도교의 가속도 유추)

  • Chung, Won-Seok;Kang, Dong-Hoon;Kim, Hyun-Min
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1062-1067
    • /
    • 2007
  • This study presents an experimental technique to monitor the dynamic behavior of the railway bridge system simultaneously using multiplexed fiber Bragg grating (FBG) sensors. The measuring quantities include stains, curvatures, vertical deflections, and vertical accelerations. The strains are directly measured from multiplexed FBG sensors at various locations of the test bridge followed by curvature calculations based on the plane section assumption. Vertical deflections are then estimated using the Bernoulli beam theory and regression analysis. Finally, vertical accelerations are obtained from the numerical differentiation in time domain. In order to verify the proposed method, several conventional electric strain gauges, displacement transducers, and accelerometers are installed at the mid-span of the bridge for comparisons. A test train is passed over the bridge to monitor the dynamic response of the bridge. The monitoring results show that the multiplexed FBG sensing system is able to capture the essential behavior of the test bridge while resolving wiring problem in practice.

  • PDF

A drive-by inspection system via vehicle moving force identification

  • OBrien, E.J.;McGetrick, P.J.;Gonzalez, A.
    • Smart Structures and Systems
    • /
    • v.13 no.5
    • /
    • pp.821-848
    • /
    • 2014
  • This paper presents a novel method to carry out monitoring of transport infrastructure such as pavements and bridges through the analysis of vehicle accelerations. An algorithm is developed for the identification of dynamic vehicle-bridge interaction forces using the vehicle response. Moving force identification theory is applied to a vehicle model in order to identify these dynamic forces between the vehicle and the road and/or bridge. A coupled half-car vehicle-bridge interaction model is used in theoretical simulations to test the effectiveness of the approach in identifying the forces. The potential of the method to identify the global bending stiffness of the bridge and to predict the pavement roughness is presented. The method is tested for a range of bridge spans using theoretical simulations and the influences of road roughness and signal noise on the accuracy of the results are investigated.

Analysis of Dynamic Response and Vibration Mitigation for Steel Box Girder Railway Bridges (강박스거더 철도교량의 동적거동 및 진동저감 방안 분석)

  • Hwang, Eui Seung;Kim, Do Young;Jang, Seong Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.487-495
    • /
    • 2017
  • Recently rapid-transit railway systems have been constructed in many developing countries due to its advantages in congestions and environmental problems. Railway bridges show many different aspects compared to road bridges and passenger comfort and traffic safety are one of them. In particular, deflection and acceleration due to repeated vibration characteristics have a structural weakness that can cause undesirable response. Especially steel railway bridges have been known to have weaknesses due to its relatively light weights compared to concrete bridges. The purpose of this study is to analyze the dynamic response of steel box girder bridges due to passing trains then propose the appropriate method to mitigate the level of vibration in terms of accelerations. Three steel railway bridges are tested and the numerical model to analyze the dynamic response of the bridge by passing train are developed. For the verification of the model, the natural frequency extracted using the acceleration data measured in the bridge is compared with the natural frequency of the numerical model. To mitigate the acceleration level of the bridge, parametric studies are performed to find the effectiveness of the method. Based on the analysis, the appropriate method is proposed for decreasing the acceleration of the bridge for passenger comfort and traffic safety.

Evaluation on Allowable Vehicle Speed Based on Safety of Track and Railway Bridge (궤도 및 교량 안전성을 고려한 열차 증속가능 속도대역 평가)

  • Bahng, Eun Young
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.145-151
    • /
    • 2018
  • In this study, the track-bridge interaction analysis was performed using an analytical model considering the track structure, thereby taking into account the linear conditions (R=650 m, cant variation $160{\pm}60mm$) and the dynamic characteristics of the bridge. As a result of the study, the allowable speed on the example bridge considered was calculated at 200 km/h based on vertical deflection, vertical acceleration, and irregularity in longitudinal level, but was also evaluated at 170km/h based on the coefficient of derailment, wheel load reduction, and lateral displacement of the rail head. It is considered desirable to set the speed 170km/h to the speed limit in order to secure the safety of both the bridge and the track. It is judged that there will be no problems with ensuring rail protection and train stability in the speed band.

Evaluation of Comfort Limit on Bridge Vibration (교량구조물의 진동 사용성 분석)

  • Kim, Nam-Sik;Jeon, Bub-Gyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.161-170
    • /
    • 2007
  • In general, deflection limit criteria of bridge design specifications would have been considered based on the static serviceability and structural stability. Dynamic serviceability induced from bridge vibration, as a comfort limit, actually has not been included in the criteria. Thus, it is necessary for dynamic serviceability to be considered in bridge vibration problems and for comfort limit on vibration to be needed for evaluating dynamic serviceability of bridges. In this paper, comfort limits of bridge structures considering the time duration exposed by vibration were examined with frequency and time dependent comfort limits, and they were evaluated by using the vibration signals measured from the existing bridges. Therefore, it is resulted that the time-dependent comfort limit considering the duration of vibration is an efficient estimate for evaluating dynamic serviceability of bridges.

  • PDF

A Study on the Long-Term Behavior of UHPC Pedestrian Cable Stayed Bridge (UHPC 보도사장교의 장기거동에 관한 연구)

  • Chin, Won-Jong;Kim, Young-Jin;Choi, Eun-Suk;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.109-110
    • /
    • 2010
  • A pedestrian UHPC cable-stayed bridge(Super Bridge I) of the KICT was completed as a test bed. A long-term monitoring system has been installed on the UHPC bridge in order to acquire all types of long-term data such as strain, acceleration, tension force, wind direction and speed, temperature, etc. This system will provide valuable database enabling to assess the long-term behavior of the UHPC pedestrian hybrid cable-stayed bridge. This database will be exploited for the evaluation of the mechanical characteristics and serviceability of the UHPC members so as to estimate the behavioral features of long-span hybrid cable stayed bridges.

  • PDF

A Experimental study on the Bridge Response of AGT System by Guiderail Prominence (AGT 시스템 안내레일 요철에 의한 교량 응답에 관한 실험적 연구)

  • Kang, Sung-Won;Han, Sang-Chul;Lee, An-Ho;Jung, In-Keun
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.453-457
    • /
    • 2007
  • AGT system is a kind of light railway train. AGT system use of concrete track and rubber tire, so it can be reduce the noise and vibration, compare to the normal train system. And, the dynamic responses of normal bridge are influenced by the dynamic characteristics of bridge, the speed of vehicle and the surface roughness of railway. But the AGT system bridge is influenced not only the above facts but also the guiderail unevenness, because, AGT vehicle steered by guiderail. So, in this study, optimized service condition is suggested for the design and operation of AGT system, by the means of experimental study. The experiments are executed for PSC bridge with length of 30m, at the AGT test line in Kyongsan. The test results are compared and investigated according to the prominence. In the test result, the guiderail prominence influenced on the dynamic response of bridge. It shows a increase as compared with no guiderail prominence in the dynamic response value acceleration, displacement, stain.

  • PDF

Evaluation of Comfort Limit on Bridge Vibration (교량구조물의 진동 사용성 분석)

  • Jeon, Bub-Gyu;Kim, Nam-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.923-935
    • /
    • 2007
  • In general, deflection limit criteria of bridge design specifications would have been considered based on the static serviceability and structural stability. Dynamic serviceability induced from bridge vibration, as a comfort limit, actually has not been included in the criteria. Thus, it is necessary for dynamic serviceability to be considered in bridge vibration problems and for comfort limit on vibration to be needed for evaluating dynamic serviceability of bridges. In this paper, comfort limits of bridge structures considering the time duration exposed by vibration were examined with frequency and time dependent comfort limits, and they were evaluated by using the vibration signals measured from the existing bridges. Therefore, it is resulted that the time-dependent comfort limit considering the duration of vibration is an efficient estimate for evaluating dynamic serviceability of bridges.