• 제목/요약/키워드: bridge acceleration

검색결과 330건 처리시간 0.027초

Structural monitoring of movable bridge mechanical components for maintenance decision-making

  • Gul, Mustafa;Dumlupinar, Taha;Hattori, Hiroshi;Catbas, Necati
    • Structural Monitoring and Maintenance
    • /
    • 제1권3호
    • /
    • pp.249-271
    • /
    • 2014
  • This paper presents a unique study of Structural Health Monitoring (SHM) for the maintenance decision making about a real life movable bridge. The mechanical components of movable bridges are maintained on a scheduled basis. However, it is desired to have a condition-based maintenance by taking advantage of SHM. The main objective is to track the operation of a gearbox and a rack-pinion/open gear assembly, which are critical parts of bascule type movable bridges. Maintenance needs that may lead to major damage to these components needs to be identified and diagnosed timely since an early detection of faults may help avoid unexpected bridge closures or costly repairs. The fault prediction of the gearbox and rack-pinion/open gear is carried out using two types of Artificial Neural Networks (ANNs): 1) Multi-Layer Perceptron Neural Networks (MLP-NNs) and 2) Fuzzy Neural Networks (FNNs). Monitoring data is collected during regular opening and closing of the bridge as well as during artificially induced reversible damage conditions. Several statistical parameters are extracted from the time-domain vibration signals as characteristic features to be fed to the ANNs for constructing the MLP-NNs and FNNs independently. The required training and testing sets are obtained by processing the acceleration data for both damaged and undamaged condition of the aforementioned mechanical components. The performances of the developed ANNs are first evaluated using unseen test sets. Second, the selected networks are used for long-term condition evaluation of the rack-pinion/open gear of the movable bridge. It is shown that the vibration monitoring data with selected statistical parameters and particular network architectures give successful results to predict the undamaged and damaged condition of the bridge. It is also observed that the MLP-NNs performed better than the FNNs in the presented case. The successful results indicate that ANNs are promising tools for maintenance monitoring of movable bridge components and it is also shown that the ANN results can be employed in simple approach for day-to-day operation and maintenance of movable bridges.

스카이브릿지 설치위치에 따른 고층건물의 진동제어 성능평가 (Performance Evaluation of Vibration Control According to Installation Location of a Sky-bridge)

  • 김현수;박용구;고현;이의현;이동근
    • 한국공간구조학회논문집
    • /
    • 제10권3호
    • /
    • pp.65-74
    • /
    • 2010
  • 본 연구에서는 스카이브릿지 설치위치 및 연결된 구조물의 고유진동주기 차이에 따른 전체 구조물의 진동제어 효과를 분석하였다. 이를 위하여 스카이브릿지로 연결된 40층과 50층 구조물을 예제 구조물로 사용하였고, 등가모형화기법을 이용하여 예제 모델을 구성하였다. El Centro 및 Taft 지진을 사용하여 경계비선형 시간이력해석을 수행하였고 구조물의 동적거동과 진동제어 효과를 분석하였다. 해석결과 변위응답은 스카이브릿지를 상부층에 설치할수록 더 효과적으로 제어할 수 있었고 가속도응답은 구조물의 중간층부근에 설치할 때 더 효과적으로 저감시킬 수 있었다.

  • PDF

Effects of ground motion frequency content on performance of isolated bridges with SSI

  • Neethu, B;Das, Diptesh;Garia, Siddharth
    • Earthquakes and Structures
    • /
    • 제13권4호
    • /
    • pp.353-363
    • /
    • 2017
  • The present study considers a multi-span continuous bridge, isolated by lead rubber bearing (LRB). Dynamic soilstructure interaction (SSI) is modelled with the help of a simplified, sway-rocking model for different types of soil. It is well understood from the literature that SSI influences the structural responses and the isolator performance. However, the abovementioned effect of SSI also depends on the earthquake ground motion properties. It is very important to understand how the interaction between soil and structure varies with the earthquake ground motion characteristics but, as far as the knowledge of the authors go, no study has been carried out to investigate this effect. Therefore, the objectives of the present study are to investigate the influence of earthquake ground motion characteristics on: (a) the responses of a multi span bridge (isolated and non-isolated), (b) the performance of the isolator and, most importantly, (c) the soil-structure interaction. Statistical analyses are conducted by considering 14 earthquakes which are selected in such a way that they can be categorized into three frequency content groups according to their peak ground acceleration to peak ground velocity (PGA/PGV) ratio. Lumped mass model of the bridge is developed and time history analyses are carried out by solving the governing equations of motion in the state space form. The performance of the isolator is studied by comparing the responses of the bridge with those of the corresponding uncontrolled bridge (i.e., non-isolated bridge). On studying the effect of earthquake motions, it is observed that the earthquake ground motion characteristics affect the interaction between soil and structure in such a way that the responses decrease with increase in frequency content of the earthquake for all the types of soil considered. The reverse phenomenon is observed in case of the isolator performance where the control efficiencies increase with frequency content of earthquake.

Gaussian mixture model for automated tracking of modal parameters of long-span bridge

  • Mao, Jian-Xiao;Wang, Hao;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • 제24권2호
    • /
    • pp.243-256
    • /
    • 2019
  • Determination of the most meaningful structural modes and gaining insight into how these modes evolve are important issues for long-term structural health monitoring of the long-span bridges. To address this issue, modal parameters identified throughout the life of the bridge need to be compared and linked with each other, which is the process of mode tracking. The modal frequencies for a long-span bridge are typically closely-spaced, sensitive to the environment (e.g., temperature, wind, traffic, etc.), which makes the automated tracking of modal parameters a difficult process, often requiring human intervention. Machine learning methods are well-suited for uncovering complex underlying relationships between processes and thus have the potential to realize accurate and automated modal tracking. In this study, Gaussian mixture model (GMM), a popular unsupervised machine learning method, is employed to automatically determine and update baseline modal properties from the identified unlabeled modal parameters. On this foundation, a new mode tracking method is proposed for automated mode tracking for long-span bridges. Firstly, a numerical example for a three-degree-of-freedom system is employed to validate the feasibility of using GMM to automatically determine the baseline modal properties. Subsequently, the field monitoring data of a long-span bridge are utilized to illustrate the practical usage of GMM for automated determination of the baseline list. Finally, the continuously monitoring bridge acceleration data during strong typhoon events are employed to validate the reliability of proposed method in tracking the changing modal parameters. Results show that the proposed method can automatically track the modal parameters in disastrous scenarios and provide valuable references for condition assessment of the bridge structure.

Numerical performance assessment of Tuned Mass Dampers to mitigate traffic-induced vibrations of a steel box-girder bridge

  • Bayat, Elyas;Bayat, Meysam;Hafezzadeh, Raheb
    • Structural Engineering and Mechanics
    • /
    • 제78권2호
    • /
    • pp.125-134
    • /
    • 2021
  • In this paper, the effects of Tuned Mass dampers (TMDs) on the reduction of the vertical vibrations of a real horizontally curved steel box-girder bridge due to different traffic loads are numerically investigated. The performance of TMDs to reduce the bridge vibrations can be affected by the parameters such as dynamic characteristics of TMDs, the location of TMDs, the speed and weight of vehicles. In the first part of this study, the effects of mass ratio, damping percentage, frequency ratio, and location of TMDs on the performance of TMDs to decrease vertical vibrations of different sections of bridge deck are evaluated. In the second part, the performance of TMD is investigated for different speeds and weights of traffic loads. Results show that the mass ratio of TMDs is the more effective parameter in reducing imposed vertical vibration in comparison with the damping ratio. Furthermore, it is found that TMD is very sensitive to its tuned frequency, i.e., with a little deviation from a suitable frequency, the expected performance of TMD significantly decreased. TMDs have a positive and considerable performance at certain vehicle speeds and this performance declines when the weight of traffic loads is increased. Besides, the results reveal that the highest impact of TMD on the reduction of the vertical vibrations is when free vibrations occur for the bridge deck. In that case, maximum reductions of 24% and 59% are reported in the vertical acceleration of the bridge deck for the forced and free vibration amplitudes, respectively. The maximum reduction of 13% is also obtained for the maximum displacement of the bridge deck. The results are mainly related to the resonance condition.

주행면 단차에 의한 경량전철 교량의 충격 시뮬레이션 및 실험 (Simulation and Experimental Study on the Impact of Light Railway Train Bridge Due to Concrete Rail Prominence)

  • 전준태;송재필
    • 대한토목학회논문집
    • /
    • 제30권1A호
    • /
    • pp.45-52
    • /
    • 2010
  • 본 연구는 AGT 시스템의 콘크리트 주행면에 발생할 수 있는 요철이 교량 구조물에 미치는 영향을 파악하고자 경북 경산의 경량전철 시험선 중 30 m P.S.C. 교량을 대상으로 지간 중앙에 10 mm의 단차를 설치하여 교량에 가해지는 충격량을 실험을 통해 확인하였다. 아울러 이미 개발된 컴퓨터 시뮬레이션 프로그램과 실험을 비교하여 시뮬레이션 프로그램의 실무 적용 가능성을 평가하였다. 실험 결과 콘크리트 주행면에 단차가 있는 경우 교량 변위는 미약하게 증가하였으나 가속도 응답은 5 km/h의 주행속도에서는 평균 345%, 20 km/h부터 60 km/h까지는 평균 50%가 증가하여 콘크리트 주행면 단차가 교량에 과도한 충격 및 진동을 유발하여 교량 내구성에 악영향을 미칠 수 있음을 확인하였다. 아울러 개발된 AGT 차량 및 교량 동적 상호작용 해석 프로그램으로 단차에 의한 교량 변위 및 가속도 응답 해석을 수행한 결과 실험과 유사한 응답 시뮬레이션이 가능하였다. 이는 추후 AGT 교량 설계와 AGT 콘크리트 주행면 관리를 위한 기준 설정에 효과적으로 활용할 수 있음을 확인하였다.

설계다이어그램을 이용한 KTX와 HEMU 차량 주행시 단경간 단순지지 교량의 동특성 분석 (Dynamic Characteristics of Simply Supported Single Span Bridges for KTX and HEMU using Design Diagram)

  • 조정래;조근희;곽종원;김영진
    • 한국철도학회논문집
    • /
    • 제15권5호
    • /
    • pp.498-507
    • /
    • 2012
  • 본 논문에서는 KTX와 HEMU 차량 주행시 단경간 단순지지교량의 간편한 동적 해석을 위한 ERRI 설계다이어그램을 제시하고, 이를 통해 교량의 동적응답특성과 설계시 고려사항을 분석하였다. 국내에서 많이 적용되는 25m, 30m, 35m, 40m 지간장을 갖는 단경간 단순지지 교량에 대해 KTX 및 HEMU 차량 주행시 설계다이어그램을 계산하였다. 이를 통해 선택된 4개 지간장 교량을 대상으로 각 열차하중에 대한 동특성을 분석하였다. 또한 공진시 가속도 응답을 만족하는 최소한의 단위길이당 질량을 지간길이, 차량유형, 감쇠비 등에 따라 제시하였고 설계시 고려사항을 분석하였다. 25m 교량은 HEMU와 KTX 차량 모두 공진시 응답이 증폭되므로 공진이 발생하지 않도록 설계하는 것이 경제적이다. 30m 교량은 HEMU 차량, 35m와 40m 교량은 KTX 차량이 주행할 때 응답이 증폭될 수 있으며 공진을 회피하거나 최소한의 단위길이당 질량을 배치하도록 설계해야 한다.

철도차량의 증속에 따른 판형교의 진동특성 (Dynamic Characteristics of Railway Plate Girder Bridges with Increase of Diesel Locomotive Speed)

  • 조은상;김현민;황원섭;오지택
    • 한국강구조학회 논문집
    • /
    • 제18권6호
    • /
    • pp.769-782
    • /
    • 2006
  • 상시 운행 열차는 운행 속도 대역폭이 한정되어 있기 때문에 속도에 따른 교량의 동적응답 특성 파악에는 한계가 있다. 따라서 본 연구에서는 교량상을 통과하는 열차 속도와 교량의 동적응답의 상관관계를 파악하기 위하여 실운행 디젤 기관차 1량에 의한 증속실험을 실시하였다. 가속도 응답특성 분석을 위하여 지점부를 제외한 전구간에 걸쳐 등간격으로 7개의 수직가속도와 중앙부에 1개의 수평가속도계를 부착하였다. 교량의 중앙부에는 연직방향과 횡방향 거동특성 파악을 위하여 수직 변위계, 수평 변위계, 휨변형률계를 각각 1개씩 설치하였다. 실험 차량을 대상 교량의 중앙부와 지점부에 정적재하 후 5km/h부터 90km/h까지 10km/h씩 증속하였고, 각 속도 대역별로 2회씩 반복하여 실험을 실시하였다. 실측 데이터의 필터링 방법에 따른 진동 평가 방법의 적절성을 검토하였고, 연직방향 진동가속도 대비 횡방향 진동수준을 평가하였으며, 속도에 따른 처짐, 변형률 및 윤중변동 특성을 검토하였다.

Seismic fragility curves for a concrete bridge using structural health monitoring and digital twins

  • Rojas-Mercedes, Norberto;Erazo, Kalil;Di Sarno, Luigi
    • Earthquakes and Structures
    • /
    • 제22권5호
    • /
    • pp.503-515
    • /
    • 2022
  • This paper presents the development of seismic fragility curves for a precast reinforced concrete bridge instrumented with a structural health monitoring (SHM) system. The bridge is located near an active seismic fault in the Dominican Republic (DR) and provides the only access to several local communities in the aftermath of a potential damaging earthquake; moreover, the sample bridge was designed with outdated building codes and uses structural detailing not adequate for structures in seismic regions. The bridge was instrumented with an SHM system to extract information about its state of structural integrity and estimate its seismic performance. The data obtained from the SHM system is integrated with structural models to develop a set of fragility curves to be used as a quantitative measure of the expected damage; the fragility curves provide an estimate of the probability that the structure will exceed different damage limit states as a function of an earthquake intensity measure. To obtain the fragility curves a digital twin of the bridge is developed combining a computational finite element model and the information extracted from the SHM system. The digital twin is used as a response prediction tool that minimizes modeling uncertainty, significantly improving the predicting capability of the model and the accuracy of the fragility curves. The digital twin was used to perform a nonlinear incremental dynamic analysis (IDA) with selected ground motions that are consistent with the seismic fault and site characteristics. The fragility curves show that for the maximum expected acceleration (with a 2% probability of exceedance in 50 years) the structure has a 62% probability of undergoing extensive damage. This is the first study presenting fragility curves for civil infrastructure in the DR and the proposed methodology can be extended to other structures to support disaster mitigation and post-disaster decision-making strategies.

알루미늄전해콘덴서의 가속수명시험에 관한 실험연구 (An Experimental Study on Accelerated Life Testing for Aluminum Electrolytic Capacitors)

  • 김흥진;전호성;김성득;박영택;진홍기;박찬웅
    • 품질경영학회지
    • /
    • 제23권4호
    • /
    • pp.128-147
    • /
    • 1995
  • An accelerated life testing(ALT) for aluminum electrolytic capacitors is conducted and analyzed. A testing equipment, which consists of part fixtures, relay board, controller, video bridge and microcomputer, is made for the ALT. Load factors are temperature with four levels and voltage with three levels. Base on 'optimized 4:2:1 plan', 2,000 electrolytic capacitors are allocated at 12 experimental conditions(; 4 levels of temperature ${\times}3$ levels of voltage), and the ALT is conducted. From the experimental results, an acceleration model is derived and acceleration factors are estimated. A discussion on the experimental results is included.

  • PDF