• Title/Summary/Keyword: breed improvement

Search Result 130, Processing Time 0.022 seconds

Predicting the rate of inbreeding in populations undergoing four-path selection on genomically enhanced breeding values

  • Togashi, Kenji;Adachi, Kazunori;Kurogi, Kazuhito;Yasumori, Takanori;Watanabe, Toshio;Toda, Shohei;Matsubara, Satoshi;Hirohama, Kiyohide;Takahashi, Tsutomu;Matsuo, Shoichi
    • Animal Bioscience
    • /
    • v.35 no.6
    • /
    • pp.804-813
    • /
    • 2022
  • Objective: A formula is needed that is practical for current livestock breeding methods and that predicts the approximate rate of inbreeding (ΔF) in populations where selection is performed according to four-path programs (sires to breed sons, sires to breed daughters, dams to breed sons, and dams to breed daughters). The formula widely used to predict inbreeding neglects selection, we need to develop a new formula that can be applied with or without selection. Methods: The core of the prediction is to incorporate the long-tern genetic influence of the selected parents in four-selection paths executed as sires to breed sons, sires to breed daughters, dams to breed sons, and dams to breed daughters. The rate of inbreeding was computed as the magnitude that is proportional to the sum of squared long-term genetic contributions of the parents of four-selection paths to the selected offspring. Results: We developed a formula to predict the rate of inbreeding in populations undergoing four-path selection on genomically enhanced breeding values and with discrete generations. The new formula can be applied with or without selection. Neglecting the effects of selection led to underestimation of the rate of inbreeding by 40% to 45%. Conclusion: The formula we developed here would be highly useful as a practical method for predicting the approximate rate of inbreeding (ΔF) in populations where selection is performed according to four-path programs.

Analysis of Environmental Effect on Reproductive Trait(Litter Size at Birth and Weaning Rate) in Swine (국내 돼지의 번식 형질(산자수 및 이유율)에 대한 환경효과 분석)

  • Choi, Tae-Jeong;Kwak, Chun-Uk;Song, Kyu-Bong;Na, Jong-Sam;Choe, Ho-Sung
    • Reproductive and Developmental Biology
    • /
    • v.34 no.1
    • /
    • pp.27-32
    • /
    • 2010
  • This study was conducted to estimate the effect of the breed, sire-breeds, farrowing year, farrowing season and parity on number of born alive (NBA), number of weaning (NW) and survival rates of weaning (SRW) in swine. The data were obtained from 46,704 litters of the Landrace, Yorkshire, Duroc and Cross breed farrowed from 1996 to 2005 at 142 GP are registered in Korean Animal Improvement Association (KAIA). There was highly significant effect of breed, sire breed, farrowing year, farrowing season and parity on NBA, NW, SRW (p<0.01). The result of this study could be available to genetic improvement of reproductive traits as a basic reference in Korean pig industry. To achieve the more effective improvement of reproductive traits, additional research such as genetic parameter evaluation should be performed.

Selection on milk production and conformation traits during the last two decades in Japan

  • Togashi, Kenji;Osawa, Takefumi;Adachi, Kazunori;Kurogi, Kazuhito;Tokunaka, Kota;Yasumori, Takanori;Takahashi, Tsutomu;Moribe, Kimihiro
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.2
    • /
    • pp.183-191
    • /
    • 2019
  • Objective: The purpose of this study was to compare intended and actual yearly genetic gains for milk production and conformation traits and to investigate the simple selection criterion practiced among milk production and conformation traits during the last two decades in Japan. Learning how to utilize the information on intended and actual genetic gains during the last two decades into the genomic era is vital. Methods: Genetic superiority for each trait for four paths of selection (sires to breed bulls [SB], sires to breed cows [SC], dams to breed bulls [DB], and dams to breed cows [DC]) was estimated. Actual practiced simple selection criteria were investigated among milk production and conformation traits and relative emphasis on milk production and conformation traits was compared. Results: Selection differentials in milk production traits were greater than those of conformation traits in all four paths of selection. Realized yearly genetic gain was less than that intended for milk production traits. Actual annual genetic gain for conformation traits was equivalent to or greater than intended. Retrospective selection weights of milk production and conformation traits were 0.73:0.27 and 0.56:0.44 for intended and realized genetic gains, respectively. Conclusion: Selection was aimed more toward increasing genetic gain in milk production than toward conformation traits over the past two decades in Japan. In contrast, actual annual genetic gain for conformation traits was equivalent to or greater than intended. Balanced selection between milk production and conformation traits tended to be favored during actual selection. Each of four paths of selection (SB, SC, DB, and DC) has played an individual and important role. With shortening generation interval in the genomic era, a young sire arises before the completion of sire's daughters' milk production records. How to integrate these four paths of selection in the genomic era is vital.

Multi-breed Genetic Evaluation for Swine in Korea (국내 종돈의 다품종 유전능력 평가)

  • Do, C.H.;Park, H.Y.;Hyun, J.Y.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.377-382
    • /
    • 2002
  • This study was carried out for the simultaneous genetic evaluation of swine breeds from the seedstock farms in Korea. The performance tested production records of 96,842 heads and the litter records of 90,396 litters from 1995 to 2001 were analyzed to estimate the breeding values and the breed effects of days to 90kg, daily gain, back fat thickness, loin muscle area, lean meat percent, total litter size and number born alive from Landrace, Yorkshire and Duroc. Estimated breed effects of traits had shown the characteristics of the breeds. Landrace was superior in back fat thickness and lean meat percent to other breeds. Yorkshire had shown good performance in lean meat percent, loin muscle area, total litter size and number born alive. Duroc was superior to the other breeds in days to 90kg and daily gain. Conclusively, the multi-breed genetic evaluation would result in higher connectedness and provide convenience for the routine genetic evaluation process of swine performance and reproduction test.

Analysis of genetic characteristics of pig breeds using information on single nucleotide polymorphisms

  • Lee, Sang-Min;Oh, Jae-Don;Park, Kyung-Do;Do, Kyoung-Tag
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.4
    • /
    • pp.485-493
    • /
    • 2019
  • Objective: This study was undertaken to investigate the genetic characteristics of Berkshire (BS), Landrace (LR), and Yorkshire (YS) pig breeds raised in the Great Grandparents pig farms using the single nucleotide polymorphisms (SNP) information. Methods: A total of 25,921 common SNP genotype markers in three pig breeds were used to estimate the expected heterozygosity ($H_E$), polymorphism information content, F-statistics ($F_{ST}$), linkage disequilibrium (LD) and effective population size ($N_e$). Results: The chromosome-wise distribution of $F_{ST}$ in BS, LR, and YS populations were within the range of 0-0.36, and the average $F_{ST}$ value was estimated to be $0.07{\pm}0.06$. This result indicated some level of genetic segregation. An average LD ($r^2$) for the BS, LR, and YS breeds was estimated to be approximately 0.41. This study also found an average $N_e$ of 19.9 (BS), 31.4 (LR), and 34.1 (YS) over the last 5th generations. The effective population size for the BS, LR, and YS breeds decreased at a consistent rate from 50th to 10th generations ago. With a relatively faster $N_e$ decline rate in the past 10th generations, there exists possible evidence for intensive selection practices in pigs in the recent past. Conclusion: To develop customized chips for the genomic selection of various breeds, it is important to select and utilize SNP based on the genetic characteristics of each breed. Since the improvement efficiency of breed pigs increases sharply by the population size, it is important to increase test units for the improvement and it is desirable to establish the pig improvement network system to expand the unit of breed pig improvement through the genetic connection among breed pig farms.

EFFECT OF BREEDING LENGTH ON GENETIC IMPROVEMENT IN JAPANESE HOLSTEIN POPULATION

  • Terawaki, Y.;Shimizu, H.;Fukui, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.4
    • /
    • pp.363-370
    • /
    • 1996
  • The effect of breeding length of sire on genetic progress was examined in the Holstein dairy cattle population in Japan. Genetic progress was extimated by gene flow method. Breeding length of sires directly influences the replacement rates of sires and the selection intensity of sires because there are a fixed number of progeny tested young bulls per year. As breeding length of sires increased, rate of gene flow decreased and average proportions of genes deriving from selected animals had lower asymptotic values. When breeding length was short, average proportions of genes required a longer period to converge to asymptotic values. Changes of Rcow-sire's(sire to breed recorded cows) and Ncow-sire's(sire to breed non recorded cows) breeding length influenced not only transmission of their genes but also that of genes derived from all other selected animals. Irrespective of whether the discount rate was assumed to be 0 or 6%, longer term (${\geq}$ 20 years) expected total genetic improvement was maximized by a sire breeding length of five years. For shorter term assessment(10 years), genetic improvement was maximized by a sire breeding length of three years. There was a linear increase in the contribution of the sire to bulls pathway to the total genetic improvement, with increase in the term of assessment.

Genetic Structure and Differentiation of Three Indian Goat Breeds

  • Dixit, S.P.;Verma, N.K.;Aggarwal, R.A.K.;Kumar, Sandeep;Chander, Ramesh;Vyas, M.K.;Singh, K.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.9
    • /
    • pp.1234-1240
    • /
    • 2009
  • Gene flow, genetic structure and differentiation of Kutchi, Mehsana and Sirohi breeds of goat from North-Western India were evaluated based on 25 microsatellite markers so as to support breed conservation and improvement decisions. The microsatellite genotyping was carried out using an automated DNA sequencer. The gene diversity across the studied loci for the Kutchi breed varied from 0.57 (ILST 065) to 0.93 (OarFCB 304, OMHC 1, ILSTS 058) with an overall mean of 0.79${\pm}$0.02. The corresponding values for Mehsana and Sirohi breeds were 0.16 (ILST 008) to 0.93 (OMHC 1, ILSTS 058) with an average of 0.76${\pm}$0.04, and 0.50 (ILSTS 029) to 0.94 (ILSTS 058) with an average of 0.78${\pm}$0.02, respectively. The Mehsana breed had lowest gene diversity among the 3 breeds studied. All the populations showed an overall significant heterozygote deficit ($F_{is}$). The Fis values were 0.26, 0.14 and 0.36 for Kutchi, Mehsana and Sirohi goat breeds, respectively. Kutchi and Mehsana were more differentiated (16%) followed by Mehsana and Sirohi (13%).The measures of standard genetic distance between pairs of breeds indicated that the lowest genetic distance was between Kutchi and Sirohi breeds (0.73) and the largest genetic distance was between Mehsana and Kutchi (1.0) followed by Sirohi and Mehsana (0.75) breeds. Mehsana and Kutchi are distinct breeds and this was revealed by the estimated genetic distance between them. All measures of genetic variation revealed substantial genetic variation in each of the populations studied, thereby showing good scope for their further improvement.

Genetic diversity of Saudi native chicken breeds segregating for naked neck and frizzle genes using microsatellite markers

  • Fathi, Moataz;El-Zarei, Mohamed;Al-Homidan, Ibrahim;Abou-Emera, Osama
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1871-1880
    • /
    • 2018
  • Objective: Recently, there has been an increasing interest in conservation of native genetic resources of chicken on a worldwide basis. Most of the native chicken breeds are threatened by extinction or crossing with ecotypes. Methods: Six Saudi native chicken breeds including black naked neck, brown frizzled, black, black barred, brown and gray were used in the current study. The aim of the current study was to evaluate genetic diversity, relationship and population structure of Saudi native chicken breeds based on 20 microsatellite markers. Results: A total of 172 alleles were detected in Saudi native chicken breeds across all 20 microsatellite loci. The mean number of alleles per breed ranged from 4.35 in gray breed to 5.45 in normally feathered black with an average of 8.6 alleles. All breeds were characterized by a high degree of genetic diversity, with the lowest heterozygosity found in the brown breed (72%) and the greatest in the frizzled and black barred populations (78%). Higher estimate of expected heterozygosity (0.68) was found in both black breeds (normal and naked neck) compared to the other chicken populations. All studied breeds showed no inbreeding within breed (negative inbreeding coefficient [$F_{IS}$]). The phylogenetic relationships of chickens were examined using neighbor-joining trees constructed at the level of breeds and individual samples. The neighbor-joining tree constructed at breed level revealed three main clusters, with naked neck and gray breeds in one cluster, and brown and frizzled in the second cluster leaving black barred in a separate one. Conclusion: It could be concluded that the genetic information derived from the current study can be used as a guide for genetic improvement and conservation in further breeding programs. Our findings indicate that the Saudi native chicken populations have a rich genetic diversity and show a high polymorphism.

Meat Quality and Volatile Flavor Traits of Duroc, Berkshire and Yorksire Breeds

  • Dashmaa, Dashdorj;Cho, Byung-Wook;Odkhuu, Ganbat;Park, Kyoung-Mi;Do, Kyoung-Tag;Lee, Ki-Hwan;Seo, Kang-Seok;Choi, Jae-Gwan;Lee, Moon-Jun;Cho, In-Kyung;Ryu, Kyeong-Seon;Jeong, Da-Woon;Hwang, In-Ho
    • Food Science of Animal Resources
    • /
    • v.31 no.6
    • /
    • pp.807-816
    • /
    • 2011
  • The present study evaluated the difference in objective and subjective meat quality properties among the pure-breed boars of Duroc, Berkshire and Yorkshire. Ten longissimus lumborum (LD) muscles were collected from each breed after 24 h slaughtering. The breed type showed a significant effect on intramuscular fat content, moisture (p<0.01), pH, sarcoplasmic protein solubility and color (p<0.05), whereas cooking loss and Warner Blazer shear force (WBsf) did not differ among the breeds. The Yorkshire breed showed significant (p<0.05) lower sarcoplasmic protein solubility, pH and CIE $a^*$ value when compared with other breeds. The sensory panels identified Duroc as having greater overall acceptability and higher rating values than other breeds. The oleic acid content was significantly lower in the Berkshire (29.85 %) than in the Duroc (40.19 %) and Yorkshire breeds (38.18 %, p<0.05). The Yorkshire breed showed the most desirable ratio of polyunsaturated and saturated fatty acids (0.31) than the Berkshire (0.16) and Duroc breeds (0.15, p<0.05). 40 volatile compounds have been identified and quantified, while aldehydes were the most abundant among flavor substances. Aldehydes were negatively correlated with oleic acid content (p<0.05). Current data indicated that each breed had their own merits and deficiencies in terms of meat qualityThe Yorkshire breed showed a greater number of weak points. Furthermore, this study indicated that individual fat-driven flavor components were greatly influenced by fatty acid composition. The polyunsaturated fatty acids did not show any negative effects on meat flavor if cooked meats were consumed soon after cooking.

Heterosis and Percent Improvement in Survivability, Reproduction and Production Performance of Various Genetic Groups of Temperate x Zebu Crosses in Tropics

  • Singh, Kuldeep;Khanna, A.S.;Sangwan, M.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.6
    • /
    • pp.794-799
    • /
    • 2003
  • A study was conducted on 2102 records of 808 crossbred cows of various genetic groups maintained under 'All India Coordinated Research Project on Cattle' at C C S Haryana Agricultural University, Hisar, over 25 years period (1968-1993) with an objective to assess and compare the amount of percent improvement and heterotic effect for different performance traits in various genetic groups produced under this programme. Survivability sharply and significantly declined from 1/2 to $3/4^th$ bred and further from $3/4^th$ to inter-se bred. This may be due to periodic and management differences in addition to the higher level of exotic inheritance and decreased heterotic effect over the filial generations. Jersey and Holstein Friesian crosses among 1/2 breds and their 50% inheritance among $3/4^th$ and inter-se breds had highest improvement and heterosis in reproduction and production traits respectively. Among inter se bred genetic groups, BFH (I) had no recombination loss in SP and CI, while FJH (I), JFH (I) and FBH (I) had on recombination loss in AFC, LY, LL and PE. The crossbreeding of zebu cows with exotic breeds brings about spectacular improvement in comparison to the performance of zebu breed, while conventional selection over several generation would lead to only modest improvement. In addition to additive effect, there was sufficient heterosis in Jersey crosses for reproduction and Holstein Friesian crosses for production performance. Three breed crosses with exotic inheritance between 50 and 75 percent incorporating genes (25 to 50%) from both of these breeds is the best combination for stabilization.