• Title/Summary/Keyword: breakwater slope

Search Result 67, Processing Time 0.046 seconds

3D Characteristics of Dynamic Response of Seabed around Submerged Breakwater Due to Wave Loading (파랑하중에 의한 잠제 주변 해저지반의 3차원 동적응답 특성)

  • Hur, Dong-Soo;Park, Jong-Ryul;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.331-337
    • /
    • 2014
  • We analyzed the 3-D characteristics of the dynamic response of seabed around a submerged breakwater due to wave loading using a 3-D numerical scheme (LES-WASS-3D). Using our model, which considers the wave-structure-sandy seabed interactions in a 3-D wave field, we were able to investigate the 3-D characteristics of the pore-water pressure in the seabed around the submerged breakwater under various incident wave conditions. To verify the 3-D numerical analysis method suggested in this study, we compared the numerical results with the existing experimental results and found good agreement between them. The numerical analysis reveals that high pore-water pressure in the seabed is generated below a large wave height at the front slope of the submerged breakwater. It was also shown that the non-dimensional pore-water pressure in the seabed increases as the wave period increases because the wave energy dissipation decreases on the submerged breakwater and seabed as the wave period increases.

A study on hydrodynamic characteristics for. construction progress of rubble mound breakwaters (사석제의 건설 공정설계를 위한 수리학적 특성에 관한 연구)

  • Kim, Hong-Jin;Ryu, Cheong-Ro;Kim, Heon-Tae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.317-322
    • /
    • 2003
  • The Sectional and Spatial failure modes are discussed using the experimental data with long crest wave and multi-directional waves considering the failure modes occurring around the rubble-mound breakwater. The spatial & sectional stability and failure mode around the rubble-mound structures with construction progress can be summarized as follows: 1) The rubble mound structures at basic construction step was occurred serious failures when ${\xi}$ was about 6.5. 2) It was clarified that the failure modes at the round head of detached breakwater are classified as failure by plunging breaking on the slope, failure by direct incident wave force and failure by scouring at the toe of the detached break water. 3) The failure mode was found in the lower wave height than the design wave by the breaker depth effect. 4) The failure on the slope were also developed at the lee side of the round head because diffracted wave propagated into the behind area by grouping effect of multi-directional irregular wave.

  • PDF

Simulation of Wave-Induced Currents by Nonlinear Mild-Slope Equation (비선형 완경사 방정식에 의한 연안류의 모의)

  • 이정렬;박찬성;한상우
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.1
    • /
    • pp.46-55
    • /
    • 2001
  • An approach using the nonlinear wave model in predicting wave-induced currents is presented. The model results were compared with those of the conventional model using phase-averaged radiation stress, and in addition with experimental data captured by a PIV system. As a result of comparison of wave-induced currents generated behind the surface-piercing breakwater and submerged breakwater, eddy patterns appeared to be similar each other but in general numerical solutions of both models were underestimated.

  • PDF

A study of stability at the head of a breakwater with directional waves (방향성 파랑의 입사에 따른 이안제 제두부의 안정성에 관한 기초적 연구)

  • 김홍진;류청로
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.144-149
    • /
    • 2001
  • The failure at the head section of rubble-mound detached breakwaters is more important than other failure modes. because this initial failures will occur the failure of the trunk section and lead to the instability of the structure. The three-dimensional failure modes are discussed using the experimental data with multi-directional waves considering the failure modes occurring around the head of the rubble-mound detached breakwater. The spacial characteristics of failure mode around the rubble-mound structures can be summarized as follows: 1) It was clarified that the failure modes at the round head of a detached breakwater are classified as failure by plunging breaker on the slope, failure by direct incident wave force and failure by scouring at the toe of the detached breakwater. 2) The failure mode was found in the lower wave height than the design wave by the breaker depth effects. It is clarified that the structure monitored was safely designed for the design wave but the failure was occurred by the reason of breaker waves and scouring processes at the toe 3) It was observed that scouring at the toe developed in the region where steady stream due to vorticity was generated and the spatial variation of scour at the toe of the round head was predominated by incident wave direction.

  • PDF

Settlement Behavior of Rubble Mound Breakwater and Its Surrounding Seabed due to Wave-Loads (파랑하중에 의한 경사식방파제의 제체와 주변지반의 침하거동)

  • Yun, Seong-Kyu;Kim, Tae-Hyung;Lee, Kyu-Hwan;Lee, Kwang-Yeol
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.85-96
    • /
    • 2011
  • A breakwater is a important structure for both calmness of harbor and protection of the port facilities from waves generated from typhoons or wind. This study adopted the rubble mound breakwater, which is one of the most popular type of breakwaters in Korea. Rubble mound breakwater had been designed by considering only static condition previously. Recently, a dynamic wave-load due to waves has been also considered in designing breakwater. In design, the wave-load is assumed as an uniform load which only acts in the front slope of the breakwater. However, the assumption is not applicable in reality. In this study, therefore, a real-time wave-load acting on the breakwater instead of the uniform load is considered, and it is assumed to be acting on the seabed too. Based on the numerical analysis, it is found that there is a significant difference in the maximum settlement compared with the result predicted by the existing design method.

Stability Formula for Rakuna-IV Armoring Rubble-Mound Breakwater (사석방파제 위에 피복한 Rakuna-IV의 안정공식)

  • Suh, Kyung-Duck;Lee, Tae Hoon;Matsushita, Hiroshi;Nam, Hong Ki
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.4
    • /
    • pp.181-190
    • /
    • 2013
  • In this study, a total of 51 cases of hydraulic model tests has been conducted for various wave conditions and slope angles of breakwater to develop a stability formula for Rakuna-IV armoring a rubble-mound breakwater. The stability number of the formula is expressed as a function of relative damage, number of waves, structural slope, and surf similarity parameter. The stability formula is derived separately for plunging and surging waves, the greater of which is used. The transitional surf similarity parameter from plunging waves to surging waves is also presented. Lastly, to explain the stability of Rakuna-IV to the engineers who are familiar with the stability coefficient in the Hudson formula, the required weight of Rakuna-IV is calculated for varying significant wave height for typical plunging and surging wave conditions, which is then compared with those of the Hudson formula using several different stability coefficients.

Hydraulic Characteristics of Permeable Breakwater in relation to the internal Waterlevel Fluctuation (투과성 방파제의 내부수위 변동과 방파제의 수리특성)

  • 윤한삼;전재우;류청로
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.46-53
    • /
    • 2002
  • In the study, the interaction characteristics among incident waves, run-up and internal waterlevel at core layer of breakwaters were investigated. The effect of core materials on the internal waterlevel characteristics are also discussed using the results with both regular and irregular wave tests. The main results obtained are as follows; The higher internal waterleve was observed under the permeable breakwater with core layer of the lower permeability than with the higher one. And, the internal waterlevl decreased as far as the distance from the toe. In the irregular wave test, the grouping characteristics of incident waves make large fluctuation of the waterlevel. Especially, breakwaters internal waterlevel appeared to affect the hydraulic characteristics on slope.

Hydraulic stability at the head of rubble mound breakwater around the entrance harbour (항로 주변의 사석경사제 제두부의 수리학적 특성 연구)

  • Kim Hong-Jin;Ryu Cheong-Ro;Kang Yoon-Gu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.303-308
    • /
    • 2004
  • The failure at the head section of rubble mound breakwaters is more important than other failure modes. because this initial failures will occur the failure of the trunk section and lead to the instability of the structure. The three-dimensional failure modes are discussed using the experimental data with multi-directional waves considering the failure modes. It was occurred by the topographical characteristics around the head of rubble mound breakwater. The spacial characteristics of failure mode around the rubble-mound structures can be summarized as follows: 1) It was clarified that the failure modes at the round head of a detached breakwater are classified as failure by plunging breaker on the slope, failure by direct incident wave force and failure at the rubble mound breakwaters. 2) The failure mode was found in the lower wave height than the design wave by the breaker depth effects and topography around structures. It is clarified that the structure was monitored safely designed for the design wave but the failure was occurred by the reason of breaker waves.

  • PDF

Prediction of Wave-Induced Current Using Time-Dependent Wave Model (쌍곡선형 파랑모형을 이용한 해빈류 예측)

  • 이정만;김재중
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10a
    • /
    • pp.189-199
    • /
    • 1998
  • Wave-induced current model is developed in our study and this model is composed with wave transform model and current model. Two types of wave model are used in our study, one is Copeland(1985) type which is applied in the offshore region and the other is Watanabe and Maruyama(1984) type which is applied in the surf zone. The depth-integrated and time-averaged governing equation of an unsteady nonlinear form is used in the wave induced current model. Lateral mising, radiation stresses, surface and bottom stresses are considered in our current model. Copeland's(1985) relult is used to calculate radiation stress and Berkmeir & Darlymple's(1976) is used as a surface friction formula. Numerical solutions are obtained by Leendertse scheme and compared with Noda's(1974) experimental results for the uniform slope coastal region test and Nishimura & Maruyama's(1985) experimental relults and numerical simulation results for the detached breakwater test. The results from our wave model show good agreement with the others and also show nonlinear effects around the detached breakwater. Wave induced current model is developed in this study and this model shows nonlinear effects around the detached breakwater and can be applied in the surf zone and also consider the friction stresses.

  • PDF

Numerical Analysis of Diffraction Using Parabolic Mild-Slope Equation (포물선형 완경사 방정식에 의한 회절현상의 수치해석)

  • Kim, Sang-Ug;Son, Min-Woo;Baek, Kyoung-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1914-1918
    • /
    • 2006
  • Recently, the importance of ocean becomes more serious. Thus, we need to construct port structures and instruments safely. Especially, we should understand the diffraction phenomenon of wave in order to construct breakwaters. To simulate diffraction of wave, parabolic mild slope equations are solved using FDM. A breakwater with an open part and an half infinite breakwater are selected for simulation. Diffraction of wave are simulated in the condition of wave angles of attack of $0^{\circ},\;30^{\circ}\;and\l;60^{\circ}$. Diffraction Coefficient and 1)Ampplitude are shown in graphics and compared with results of Penny & Price and Memos.

  • PDF