• Title/Summary/Keyword: breakaway 지주단부

Search Result 3, Processing Time 0.016 seconds

Calculation Method and Influence Factor for Speed Change of a Vehicle Impacting Small Sign Post (소형지주에 충돌하는 차량의 속도변화 산정방법과 영향인자)

  • Ko, Man-Gi;Kim, Kee-Dong;Jun, Sung-Min;Sung, Jung-Gon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.47-52
    • /
    • 2008
  • Important factor in designing a breakaway sign support is the velocity change of the impact vehicle. It is measured from the crash test or can be calculated by 3-D Finite Element Analysis. It can also be calculated with relative ease utilizing energy and momentum conservation. In this paper a formula to calculate the velocity change of a car during the time of impact against a small sign is derived utilizing the energy and momentum balance. Using the formula, parametric studies were conducted to find that impact speed, separation force and Breakaway Fracture Energy(BFE) of the posts which represent the degree of fixedness to the foundation are the important factor to vehicle's speed change. It is shown that speed change is larger in the lower speed impact and to the posts with large separation force and BFE.

Breakaway Fracture Energy(BFE) of Indented Type Bolt for Breakaway Sign Supports (분리식 지주 단부장치에 이용되는 인덴티드 타입 볼트의 분리파괴에너지)

  • Ko, Man-Gi;Kim, Kee-Dong;Jun, Sung-Min;Sung, Jung-Gon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.39-45
    • /
    • 2008
  • Breakaway support for small signs of size $0.293\;m^2{\sim}0.360\;m^2$ using indented tube type bolt of D12 mm with 6 mm inner diameter has been developed and the structural strength of the support system for the wind load was verified through static shear and tension tests. One important value in understanding the dynamic behavior of sign post and impact vehicle is the fracture energy of the sign support. In this study, fracture energy needed to break the sign support was estimated by pendulum test and computer simulation using LS-DYNA program. Support system composed of 3 indented bolts was found to sustain the 43.1 kg$\sim$51.2 kg wind load safely. Fracture energy for one indented bolt was measured as 163.3J from the pendulum test, and was calculated as 153J from the LS-DYNA simulation. The closeness between these two values verified the validity of the simulation model.

Study on the Analysis of Vehicle Impact to Small Sign Support (소형표지판 지주와 차량의 충돌해석에 관한 연구)

  • Ko, Man-Gil;Kim, Kee-Dong;Sung, Jung-Gon;Yun, Duk-Geun
    • International Journal of Highway Engineering
    • /
    • v.9 no.3
    • /
    • pp.39-50
    • /
    • 2007
  • Barrier VII program is normally used for the design of flexible barrier, but if modelled properly it can be used for the analysis of vehicle impact to small sign posts. In this paper sign post is shown to be modelled as flexible barrier by combining beam and column elements at each beam node. Simulations with the Barrier VII program have been made for 7 impact cases composed of sign posts of circular and H section with rigidly connected support and breakaway support system. The impact speed used for the simulation ranged from 30km/h to 110km/h. The study shows that in the vehicle impacts to a circular sign post with high speed, the large deflection and high inertia force causes the sign plate to hit the windshield leading to a hazard to the occupants. It is also shown that impact to H section post results in small deflection of the post and abrupt velocity change and high deceleration of the impact vehicle causing severe damage to both the vehicle and occupants. Simulation study also shows that breakaway support system eliminates the potential danger of the vehicle impact to the rigidly connected small sign posts by reducing deflection of the post, abrupt change in velocity and deceleration level.

  • PDF