• Title/Summary/Keyword: brazing joint

Search Result 103, Processing Time 0.024 seconds

Cyclic Oxidation Behavior of Fe-Cr-Al Joint Brazed with Nickel-Base Filler Metal (Ni계 합금으로 브레이징된 Fe-Cr-Al 합금 접합부의 주기산화거동)

  • Mun, Byeong-Gi;Choe, Cheol-Jin;Park, Won-Uk
    • 연구논문집
    • /
    • s.29
    • /
    • pp.141-149
    • /
    • 1999
  • Brazing of Fe-Cr-Al alloy was carried out at $1200^{\circ}C$ in vacuum furnace using nickel-based filler metals : BNi-5 powder(Ni-Cr-Si-Fe base alloy} and MBF-50 foil (Ni-Cr-Si-B). The effect of boron content on the stability of oxide scale on the brazed joint was investigated by means of cyclic oxidation test performed at $1050^{\circ}C$ and $1200^{\circ}C$. Apparently, the joints brazed with MBF-50 containing boron showed relatively stable oxidation rates compared to boron-free BNi-5 at both temperatures. However, it was considered that the slower weight loss of MBF-50 brazed specimen wasn’t resulted from the low oxidation rate but from the spallation of oxide layer. The oxide layer consisted of thick spinel oxide on the surface and $Al_2 O_3$ internal oxide layer along the interface between mother alloy and braze, the mother alloy was also eroded seriously by the formation of spinel oxides such as $FeCr_2 O_4$ and $NiCr_2 O_4$ on the surface, likely to be induced by the change of oxide forming mechanism due to diffusion of boron from the braze. On the contrary, the joint brazed with BNi-5 showed the good oxidation resistance during the cyclic oxidation test. It seems that the oxidation can be retarded by the formation of stable $Al_2 O_3$ layer at the surface.

  • PDF

Joining of Ceramic and Metal using Active Metal Brazing (활성금속 브레이징을 사용한 세라믹과 금속의 접합)

  • Kee, Se-Ho;Xu, Zengfeng;Jung, Jae-Pil;Kim, Won-Joong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • Active brazing of ceramic to metal is reviewed in this paper. As one of the key aspect in joint techniques, active brazing has been developed to simplify the manufacturing procedure of brazed joints between ceramic and metal. The active filler metal includes Ag-Cu-Ti series, Cu-Ti series, Co-Ti series and so on. The active filler metal which supplies the chemical bonds between ceramic and metal, enhances the wetting of filler metal on ceramic surface and eliminates the need for metallization treatments. The residual stress caused by difference of coefficient of thermal expansion between ceramic and metal, holds a direct influence on the bonding strength and even results in a fracture. Good joints of ceramic to metal promote the miniaturization and simplicity of electronic components with multifunction.

The Stress Analysis of Dissimilar Materials in Brazed Interface by BEM (이종재 브레이징 접합계면의 응력해석)

  • 오환섭;김시현;김성재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.769-772
    • /
    • 1997
  • In this study, By employing two dimensional(2-D) Boundary Element Method(BEM) stress analysis was carried to investigate stress distributions on the brazing joint of a Hardmetal and a HSS. Two model was proposed to analyze stress singularity in brazed interface. The stress results from the BEM were considered influence of the kind of materials , thickness of filled metal and length of vertical brazing adhesive. From those obtained results , the peak point of stress was founded in the lower part of two interface was made by brazing. As the thickness and length changed, the maximum stress tended to change in the peak point.

  • PDF

Strength Experimets on Head and Cooling Channel Specimens of a Preburner (예연소기 헤드 및 냉각채널 시편 강도 시험)

  • Yoo, Jae-Han;Moon, In-Sang;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.636-641
    • /
    • 2010
  • A preburner for the staged combustion in the high performance liquid rocket engine is being developed and strength experiments and finite element analyses on specimens, which simulate the brazing joint of the preburner, were performed and the results were compared. One specimen simulate the joints near oxygen injectors of head by the funance brazing and two specimens the joints of the combustion chamber cooling channel by vacuum brazing. The experiments were burst ones with strain gauges.

  • PDF

A NOVEL APPROACH TO COMPACTLY BRAZE ALUMINUM ALLOYS

  • Qian, Yiyu;Dong, Zhangui;Liu, Jun
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.545-550
    • /
    • 2002
  • In order to ensure the signal could be transported cocrrectly, the microwave devices made of Aluminmn alloys must be assembled and brazed flaw-freely. In this paper, a new approach of using contact reactive brazing (CRB) process to realize the compact brazing of Aluminum alloys was put forward. The reason for this is that CRB, which realizes bonding depending on the liquid alloy produced by metallurgy reaction between the materials to be joined, overcomes the limitation of traditional brazing that the macroscopically disorganized filling flow of liquid filler metal would result in defects in brazed seam. Joint ofLF21 (AA3003) with the compactness of over 95% was brazed by the method of CRB using Si powder as an interlayer. At last, the influence of the physical parameter related to the Si powder interlayer on the compactness of the joints was investigated in detail.

  • PDF

A study on the diffusion bonding of the $Al_2$O$_3$ ceramics to metal (A$_2$O$_3$세라믹과 Ni-Cr-Mo鋼과의 인서트 合金을 이용한 擴散接合에 關한 硏究)

  • 김영식;박훈종;김정일
    • Journal of Welding and Joining
    • /
    • v.10 no.3
    • /
    • pp.63-72
    • /
    • 1992
  • The joining methods of ceramics to metals which can be expected to obtain high temperature strength are mainly classified into the solid-state diffusion bonding method and the active brazing method. Between these two, the solid-state diffusion bonding method is given attentions as substituting method for active brazing method due to being capable of obtaining higher bonding strength at high temperature and accurate bonding. In this paper, the solid-state diffusion bonding of $Al_{2}$O$_{3}$ ceramics to Ni-Cr-Mo alloy steel (SNCM21) using insert metal was carried out. The insert metal employed in this study was experimentally home-made, Ag-Cu-Ti alloy. Influence of several bonding parameters of $Al_{2}$O$_{3}$SNCM21 joint was quantitatively evaluated by bonding strength test, and microstructural analyses at the interlayer were performed by SEM/EDX. From above experiments, the optimum bonding condition of the solid-state diffusion bonding of $Al_{2}$O$_{3}$/SNCM21 using Ag-Cu-Ti insert metal was determined. Futhermore, high temperature strength and thermal-shock properties of $Al_{2}$O$_{3}$/SNCM21 joint were also examined. The results obtained are as follows. 1. The maximum bonding strength was obtained at the temperature of 95% melting point of insert metal. 2. The high temperature strength of $Al_{2}$O$_{3}$/SNCM21 joint appeared to bemaximum value at test temperature 500.deg.C and the bonding strength with increasingtemperature showed parabolic curve. 3. The strength of thermal-shocked specimens was far deteriorated than those of as-bonded specimens. Especially, water-quenched specimen after heated up to 600.deg. C was directly fractured in quenching.

  • PDF

A Characteristic of Microstructures in Bonding Interlayer of Brazed Titanium to Copper (브레이징한 Ti/Cu 접합계면부의 미세조직 특성)

  • 김우열;정병호;이성렬
    • Journal of Welding and Joining
    • /
    • v.13 no.3
    • /
    • pp.106-115
    • /
    • 1995
  • To know the bonding phenomena of Ti/Cu brazed joint, a characteristic of microstructures in bonding interlayer of vacuum brazed pure Ti to Cu has been studied in the temperature range from 1088 to 1133K for various bonding times using Ag-28wt%Cu filler metal. Also intermediate phases formed in bonded interlayer and behavior of layer growth have been investigated. The obtained results in this study are as follows: 1) Liquid insert metal width at the each brazing temperature was proportional to the square root of brazing time, and it was considered that the liquid insert metal width was controlled by the diffusion rate process of primary .alpha.-Cu formed at the Ti side. 2) Intermediate phases formed near the Ti interface were .betha.-Ti and intermetallic compounds TiCu, Ti$_{2}$Cu, Ti$_{3}$Cu, and TiCu. 3) .betha.-Ti formed in Ti base metal durig brazing transformed to lamellar structure, .alpha.-Ti + Ti$_{2}$Cu. The structure came from the eutectoil decomposition reaction in cooling. And the width of .betha.-Ti layer was proportional to the square root of brazing time, and it was considered that the growth of .betha.-Ti layer was controlled by interdiffusion rate process in .betha.-Ti. 4) The layer growth of TiCu, Ti$_{3}$Cu$_{4}$ and TiCu, phases formed near the Ti interface was linerface was linearly proportional to the brazing time, and it was considered that the layer growth of these phases was controlled by the chemical reaction rate at the interface.

  • PDF