• Title/Summary/Keyword: branching reaction.

Search Result 43, Processing Time 0.023 seconds

Preparation and Characterization of High Molecular Weight Poly(butylene succinate)

  • Han, Yang-Kyoo;Kim, Sung-Rim;Kim, Jinyeol
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.108-114
    • /
    • 2002
  • Poly(butylene succinate) (PBS) prepolymers were prepared by the condensation polymerization of 1,4-butanediol (1,4-BD) and succinic atid (SCA) in the presence of titanium (VI) isoproxide(TPI) catalyst. The PBS prepolymers reacted with 1,4-BD or SCA to obtain hydroxyl or carboxylic acid group terminated PBS. High molecular weight linear or branched PBS was synthesized by a coupling reaction between hydroxyl and carboxylic acid group terminated PBS, or by a branching reaction between carboxylic acid group terminated PBS and glycerol as a branching agent. The weight average molecular weight of the prepared linear or branched PBS was in the range of 100,000-220,000. Both melting point and thermal stability of the high molecular weight linear and branched PBSs were somewhat higher than those of general PBS. From a tensile behavior by Instron test, modulus, tensile strength and elongation at break improved with increase in the molecular weight of the prepared PBS through the coupling or the branching reaction. In particular, the high molecular weight linear PBS had about 2.5 times higher value in modulus than the branched one.

Reaction of $FeC_5H_5^+$ Ion with Neutral Ferrocene: The Dependence of Reaction Pathways on Its Internal Energy

  • 김병주;소훈영
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1181-1185
    • /
    • 1999
  • The reaction of FeC5H5+ ion with ferrocene molecule is investigated using FT-ICR mass spectrometry. FeC5H5+ ions are generated by dissociative ionization of ferrocenes using an electron beam. The reaction gives rise to the formation of the adduct ion, Fe2(C5H5)3+, in competition with charge transfer reaction leading to the formation of ferrocene molecular ion, Fe(C5H5)2+·. The branching ratio of the adduct ion increases as the internal energy of the reactant ion decreases and correspondingly the branching ratio for the charge transfer reaction product decreases. The observed rate of the addition reaction channel is slower than that of the charge transfer reaction. The observation of the stable adduct ions in the low-pressure ICR cell is attributed to the radiative cooling of the activated ion-molecule complex. The mechanism of the reaction is presented to account for the observed experimental results.

Energy- and Time-Dependent Branching to Competing Paths in Coupled Unimolecular Dissociations of Chlorotoluene Radical Cations

  • Seo, Jongcheol;Kim, Seung Joon;Shin, Seung Koo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.833-838
    • /
    • 2014
  • The energy- and time-dependent branching to the competing dissociation paths are studied by theory for coupled unimolecular dissociations of the o-, m-, and p-chlorotoluene radical cations to $C_7{H_7}^+$ (benzylium and tropylium). There are four different paths to $C_7{H_7}^+$, three to the benzylium ion and one to the tropylium ion, and all of them are coupled together. The branching to the multiple paths leads to the multiexponential decay of reactant with the branching ratio depending on both internal energy and time. To gain insights into the multipath branching, we study the detailed kinetics as a function of time and internal energy on the basis of ab inito/RRKM calculations. The number of reaction steps to $C_7{H_7}^+$ is counted for each path. Of the three isomers, the meta mostly goes through the coupling, whereas the para proceeds with little or no coupling. In the beginning, some reactants with high internal energy decay fast to the benzylium ion without any coupling and others rearrange to the other isomers. Later on all three isomers dissociate to the products via long-lived intermediates. Thus, the reactant shows a multiexponential decay and the branching ratio varies with time as the average internal energy decreases with time. The reciprocal of the effective lifetime is taken as the rate constant. The resulting rate-energy curves are in line with experiments. The present results suggest that the coupling between the stable isomers is thermodynamically controlled, whereas the branching to the product is kinetically controlled.

A numerical analysis on the extinction of hydrogen-oxygen diffusion flames at high pressure (고압하에서 수소-산소 확산화염의 소염 특성에 관한 수치 해석)

  • Son, Chae-Hun;Kim, Jong-Su;Jeong, Seok-Ho;Lee, Su-Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1174-1184
    • /
    • 1997
  • Extinction characteristics of pure hydrogen-oxygen diffusion flames, at high pressures in the neighborhood of the critical pressure of oxygen, is numerically studied by employing counterflow diffusion flame as a model flame let in turbulent flames in rocket engines. The numerical results show that extinction strain rate increases almost linearly with pressure up to 100 atm, which can be explained by comparison of the chain-branching-reaction rate with the recombination-reaction rate. Since contributions of the chain-branching reactions, two-body reactions, are found to be much greater than those of the recombination reactions, three-body reactions, extinction is controlled by two-body reactions, thereby resulting in the linearity of extinction strain rate to pressure. Therefore, it is found that the chemical kinetic behaviors don't change up to 100 atm. Consideration of the pressure fall-off reactions shows a slight increase in extinction strain rate, but does not modify its linearity to pressure. The reduced kinetic mechanisms, which were verified at low pressures, are found to be still valid at high pressures and show good qualitative agreement in prediction of extinction strain rates. Effect of real gas is negligible on chemical kinetic behaviors of the flames.

Sn2/E2 Branching in Protic Solvents: A Mechanistic Study

  • Oh, Young-Ho;Im, Suk;Park, Sung-Woo;Lee, Sung-Yul;Chi, Dae-Yoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1535-1538
    • /
    • 2009
  • We present calculations for $S_N$2/E2 reactions in protic solvents (t-butyl alcohol, ethylene glycol). We focus on the role of the hydroxyl (-OH) groups in determining the $S_N$2/E2 rate constants. We predict that the ion pair E2 mechanism is more favorable than the naked ion E2 reaction in ethylene glycol. E2 barriers are calculated to be much larger (~ 9 kcal/mol) than $S_N$2 reaction barriers in protic solvents, in agreement with the experimental observation [Kim, D. W. et al. J. Am. Chem. Soc. 2006, 128, 16394] of no E2 products in the reaction of CsF in t-butyl alcohol.

Chemical effects of added $CO_{2}$ and $H_{2}O$ to major flame structures and NOx emission characteristics in $CH_4$/Air Counterflow Diffusion Flames (메탄-공기 대향류확산화염에서 $CO_2$$H_2O$의 첨가가 화염구조와 NOx배출특성에 미치는 화학적 영향)

  • Hwang, Dong-Jin;Park, Jeong;Lee, Kyung-Hwan;Keel, Sang-In
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.129-136
    • /
    • 2003
  • Numerical study with momentum-balanced boundary conditions has been conducted to grasp chemical effects of added $CO_{2}$ and $H_{2}O$ to fuel- and oxidizer-sides on flame structure and NO emission behavior in $CH_{4}$/Air counterflow diffusion flames. The dilution with $H_{2}O$ results in significantly higher flame temperatures and NO emission, but dilution with $CO_{2}$ has much more chemical effects than that with $H_{2}O$. Maximum reaction rate of principal chain branching reaction due to chemical effects decreases with added $CO_{2}$. but increases with added $H_{2}O$. The NO emission behavior is closely related to the production rate of OH, CH and N. The OH radical production rate increases with added $H_{2}O$ but those of CH, N decrease. On the other hand the production rates of OR CH and N decrease with added $CO_{2}$. It is found that NO emission behavior is considerably affected by chemical effects of added $CO_{2}$ and $H_{2}O$.

  • PDF

Study on the Non-isothermal Crystallization Kinetics of Branched Polypropylene (분지형 폴리프로필렌의 비등온결정화 거동 연구)

  • Yoon, Kyung-Hwa;Shin, Dong-Yup;Kim, Youn-Cheol
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.245-250
    • /
    • 2012
  • Branched polypropylenes (PP) with long chain branch were prepared by solid state reaction with three different branching agent of 0.3 wt% content. The chemical structures, non-isothermal crystallization behavior and complex viscosity of the branched PP were investigated by FTIR, DSC, optical microscope, and dynamic rheological measurement. The chemical structure of the branched PP was confirmed by the existence of =C-H stretching peak of the branching agent at 3100 $cm^{-1}$. There was no distinct change in melting temperature in case of PP-D-0-3 and PP-F-0-3, but PP-H-0-3 indicated a decrease in melting temperature. The decrease in melting temperature was interpreted by the fact that the degradation reaction of PP was more dominant than branched reaction, and confirmed by a decrease in complex viscosity. The non-isothermal crystallization behavior of the branched PP was analyzed using by Avrami equation. The Avrami exponent of PP was 3, and the values of the branched PP with DVB and FS were below 3. The activation energy of PP calculated by Kissinger method was 25 kJ/mol, and there were no big difference in activation energies of the branched PPs compared to PP.

A Study on the Rheological Properties of Branched Polypropylene/silicate Composites (분지형 폴리프로필렌/실리케이트 복합체의 유변학적 특성 연구)

  • Dahal, Prashanta;Yoon, Kyung Hwa;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.679-684
    • /
    • 2011
  • Branched polypropylenes (LCB-PP) with a long chain branch were prepared by the solid-state and molt-state reaction. Divinylbenzene (DVB), 1,4-benzenediol (RES), and furfuryl sulphide (FS) were used as branching agents of fabricate LCB-PP/silicate composites. Chemical structures, thermal properties, and rheological properties of the LCB-PP were determined by FT-IR, DSC, TGA, and dynamic rheometer (ARES). The chemical structure of the LCB-PP was confirmed by the existence of =C-H stretching peak of the branching agent at $3100cm^{-1}$. From DSC and TGA results, the melting reaction was more effective than the solid state reaction in the manufacture of LCB-PP, which was additionally certified by rheological properties. Based on rheological properties, FS was the best for branching efficiency of PP. Compared to PP, LCB-PPs indicated an increase of complex viscosity in the low frequency and shear thinning tendency, and G'-G" plot represented an increase in elasticity and the heterogeneousness in a melt state. Rheological properties of LCB-PP/silicate composites were observed with the silicate content. When 5 wt% silicate was added in LCB-PP, distinct changes in the shear thinning and the slope of G'-G" plots were observed.

Simplified Reaction Scheme of Hydrocarbon Fuels and Its Application to Autoignition of Gasoline with Different Octane Numbers (탄화수소계 연료의 축소반응모델과 가솔린연료의 옥탄가 변화에 따른 자발화 지연시간)

  • 여진구
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.13-19
    • /
    • 2003
  • Mathematically simplified reaction scheme that simulates autoignitions of the end gases in spark ignition engines has been studied computationally. The five equation model is described, to predict the essential features of hydrocarbon oxidation. This scheme has been calibrated against autoignition delay times measured in rapid compression machines. The rate constants, activation temperatures, Ta, Arrhenius preexponential constants, A, and heats of reaction for stoichiometric n-heptane/air, iso-octane/air, and their mixtures have all been optimised. The optimisation has been guided by Morley's correlation of the ratio of chain branching to linear termination rates with octane number. Comparisons between computed and experimental autoignition delay times have validated the Present simplified reaction scheme and the influences of octane number upon autoignition delay times have been computationally investigated. It has been found that both cool flame and high temperature direct reactions can have an effect on autoignition delay times.

Synthesis and Characterization of Low Viscosity Aromatic Hyperbranched Polyester Epoxy Resin

  • Zhang, Daohong;Jia, Demin;Zhou, Zihu
    • Macromolecular Research
    • /
    • v.17 no.5
    • /
    • pp.289-295
    • /
    • 2009
  • Low viscosity aromatic hyperbranched polyester epoxy resin (HTBE) was synthesized by the reaction between epichlorohydrin (ECH) and carboxyl-end hyperbranched polyester (HTB) which was prepared from inexpensive materials $A_2$ (1,4-butanediol glycol, BEG) and $B_3$ (trimellitic anhydride, TMA) by pseudo one-step method. The molar mass of the HTB was calculated from its acid value by "Recursive Probability Approach". The degree of branching (DB) of the HTB was characterized by model compounds and $^1H$ NMR-minus spectrum technology, and the DB of the HTB was about $0.47{\sim}0.63$. The viscosity and epoxy equivalent weight of the HTBE were $3,600{\sim}5,000\;cp$ and lower than 540 g/mol respectively. The reaction mechanism and structure of the $AB_2$ monomer, HTB and HTBE were investigated by MS, $^1H$ NMR and FTIR spectra technology. The molecular size of HTBE is under 8.65 nm and its shape is ellipsoid-like as determined by molecular simulation.