• 제목/요약/키워드: branched

검색결과 887건 처리시간 0.028초

Profiling of glucose-induced transcription in Sulfolobus acidocaldarius DSM 639

  • Park, Jungwook;Lee, Areum;Lee, Hyun-Hee;Park, Inmyoung;Seo, Young-Su;Cha, Jaeho
    • Genes and Genomics
    • /
    • 제40권11호
    • /
    • pp.1157-1167
    • /
    • 2018
  • Sulfolobus species can grow on a variety of organic compounds as carbon and energy sources. These species degrade glucose to pyruvate by the modified branched Entner-Doudoroff pathway. We attempted to determine the differentially expressed genes (DEGs) under sugar-limited and sugar-rich conditions. RNA sequencing (RNA-seq) was used to quantify the expression of the genes and identify those DEGs between the S. acidocaldarius cells grown under sugar-rich (YT with glucose) and sugar-limited (YT only) conditions. The functions and pathways of the DEGs were examined using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Quantitative real-time PCR (qRT-PCR) was performed to validate the DEGs. Transcriptome analysis of the DSM 639 strain grown on sugar-limited and sugar-rich media revealed that 853 genes were differentially expressed, among which 481 were upregulated and 372 were downregulated under the glucose-supplemented condition. In particular, 70 genes showed significant changes in expression levels of ${\geq}$ twofold. GO and KEGG enrichment analyses revealed that the genes encoding components of central carbon metabolism, the respiratory chain, and protein and amino acid biosynthetic machinery were upregulated under the glucose condition. RNA-seq and qRT-PCR analyses indicated that the sulfur assimilation genes (Saci_2197-2204) including phosphoadenosine phosphosulfate reductase and sulfite reductase were significantly upregulated in the presence of glucose. The present study revealed metabolic networks in S. acidocaldarius that are induced in a glucose-dependent manner, improving our understanding of biomass production under sugar-rich conditions.

Synthesis and biodistribution of 18F-labeled α-, β- and ω-fluorohexadecanoic acid

  • Lee, Yun-Sang;Kim, Young Joo;Cheon, Gi Jeong;Jeong, Jae Min
    • 대한방사성의약품학회지
    • /
    • 제4권2호
    • /
    • pp.57-64
    • /
    • 2018
  • ${\omega}-[^{18}F]$-Fluorohexadecanoic acid (FHA) has been used for imaging of fatty acid metabolism of myocardium. To increase retention of radiolabeled fatty acid by blocking ${\beta}$-oxidation, methyl branched analogues have been used. In this experiment, we tried to synthesize 18F-labeled ${\alpha}-$, ${\beta}-$ and ${\omega}-FHA$ for imaging of the myocardial fatty acid metabolism. We synthesized ${\alpha}-$, ${\beta}-$ and ${\omega}$-mesylated methyl hexadecanoates and labeled with $^{18}F$ by reacting with $[^{18}F]$TBAF in acetonitrile at $80^{\circ}C$ for 10 min. Methyl ester group was removed by 1 M NaOH at $80^{\circ}C$ for 5 min. The yields of ${\alpha}-[^{18}F]$ and ${\omega}-[^{18}F]FHA$ were 25.5 and 45.5%, respectively [EOS]. However, ${\beta}-[^{18}F]FHA$ was not labeled at all due to a fast elimination reaction. The biodistribution study in ICR-mice showed that ${\omega}-[^{18}F]FHA$ has higher myocardial uptake and lower liver uptake than ${\alpha}-[^{18}F]FHA$. The electron-withdrawing effect of fluorine at ${\alpha}-$ position is believed to be the major factor affecting the biodistribution.

Viator vitreocola gen. et sp. nov. (Stylonematophyceae), a new red alga on drift glass debris in Oregon and Washington, USA

  • Hansen, Gayle I.;West, John A.;Yoon, Hwan Su;Goodman, Christopher D.;Goer, Susan Loiseaux-de;Zuccarello, Giuseppe C.
    • ALGAE
    • /
    • 제34권2호
    • /
    • pp.71-90
    • /
    • 2019
  • A new encrusting red alga was found growing abundantly on glass debris items that drifted ashore along the coasts of Oregon and Washington. These included discarded fluorescent tubes, incandescent light bulbs, capped liquor bottles, and ball-shaped fishing-net floats. Field collections and unialgal cultures of the alga revealed that it consisted of two morphological phases: a young loosely aggregated turf and a mature consolidated mucilaginous crust. The turf phase consisted of a basal layer of globose cells that produced erect, rarely branched, uniseriate to multiseriate filaments up to $500{\mu}m$ long with closely spaced cells lacking pit-plugs. These filaments expanded in size from their bases to their tips and released single cells as spores. At maturity, a second phase of growth occurred that produced a consolidated crust, up to $370{\mu}m$ thick. It consisted of a basal layer of small, tightly appressed ellipsoidal-to-elongate cells that generated a mucilaginous perithallial matrix containing a second type of filament with irregularly spaced cells often undergoing binary division. At the matrix surface, the original filaments continued to grow and release spores but often also eroded. Individual cells, examined using confocal microscopy and SYBR Green staining, were found to contain a central nucleus, a single highly lobed peripheral chloroplast without a pyrenoid, and numerous chloroplast nucleoids. Morphological data from field and culture isolates and molecular data (rbcL, psbA, and SSU) show that this alga is a new genus and species which we name Viator vitreocola, "a traveller on glass."

Characterization of the Transglycosylation Reaction of 4-α-Glucanotransferase (MalQ) and Its Role in Glycogen Breakdown in Escherichia coli

  • Nguyen, Dang Hai Dang;Park, Sung-Hoon;Tran, Phuong Lan;Kim, Jung-Wan;Le, Quang Tri;Boos, Winfried;Park, Jong-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권3호
    • /
    • pp.357-366
    • /
    • 2019
  • We first confirmed the involvement of MalQ (4-${\alpha}$-glucanotransferase) in Escherichia coli glycogen breakdown by both in vitro and in vivo assays. In vivo tests of the knock-out mutant, ${\Delta}malQ$, showed that glycogen slowly decreased after the stationary phase compared to the wild-type strain, indicating the involvement of MalQ in glycogen degradation. In vitro assays incubated glycogen-mimic substrate, branched cyclodextrin (maltotetraosyl-${\beta}$-CD: G4-${\beta}$-CD) and glycogen phosphorylase (GlgP)-limit dextrin with a set of variable combinations of E. coli enzymes, including GlgX (debranching enzyme), MalP (maltodextrin phosphorylase), GlgP and MalQ. In the absence of GlgP, the reaction of MalP, GlgX and MalQ on substrates produced glucose-1-P (glc-1-P) 3-fold faster than without MalQ. The results revealed that MalQ led to disproportionate G4 released from GlgP-limit dextrin to another acceptor, G4, which is phosphorylated by MalP. In contrast, in the absence of MalP, the reaction of GlgX, GlgP and MalQ resulted in a 1.6-fold increased production of glc-1-P than without MalQ. The result indicated that the G4-branch chains of GlgP-limit dextrin are released by GlgX hydrolysis, and then MalQ transfers the resultant G4 either to another branch chain or another G4 that can immediately be phosphorylated into glc-1-P by GlgP. Thus, we propose a model of two possible MalQ-involved pathways in glycogen degradation. The operon structure of MalP-defecting enterobacteria strongly supports the involvement of MalQ and GlgP as alternative pathways in glycogen degradation.

Metabolomic approach to key metabolites characterizing postmortem aged loin muscle of Japanese Black (Wagyu) cattle

  • Muroya, Susumu;Oe, Mika;Ojima, Koichi;Watanabe, Akira
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권8호
    • /
    • pp.1172-1185
    • /
    • 2019
  • Objective: Meat quality attributes in postmortem muscle tissues depend on skeletal muscle metabolites. The objective of this study was to determine the key metabolic compounds and pathways that are associated with postmortem aging and beef quality in Japanese Black cattle (JB; a Japanese Wagyu breed with highly marbled beef). Methods: Lean portions of Longissimus thoracis (LT: loin) muscle in 3 JB steers were collected at 0, 1, and 14 days after slaughter. The metabolomic profiles of the samples were analyzed by capillary electrophoresis time-of-flight mass spectrometry, followed by statistical and multivariate analyses with bioinformatics resources. Results: Among the total 171 annotated compounds, the contents of gluconic acid, gluconolactone, spermidine, and the nutritionally vital substances (choline, thiamine, and nicotinamide) were elevated through the course of postmortem aging. The contents of glycolytic compounds increased along with the generation of lactic acid as the beef aging progressed. Moreover, the contents of several dipeptides and 16 amino acids, including glutamate and aromatic and branched-chain amino acids, were elevated over time, suggesting postmortem protein degradation in the muscle. Adenosine triphosphate degradation also progressed, resulting in the generation of inosine, xanthine, and hypoxanthine via the temporal increase in inosine 5'-monophosphate. Cysteine-glutathione disulfide, thiamine, and choline increased over time during the postmortem muscle aging. In the Kyoto encyclopedia of genes and genomes database, a bioinformatics resource, the postmortem metabolomic changes in LT muscle were characterized as pathways mainly related to protein digestion, glycolysis, citric acid cycle, pyruvate metabolism, pentose phosphate metabolism, nicotinamide metabolism, glycerophospholipid metabolism, purine metabolism, and glutathione metabolism. Conclusion: The compounds accumulating in aged beef were shown to be nutritionally vital substances and flavor components, as well as potential useful biomarkers of aging. The present metabolomic data during postmortem aging contribute to further understanding of the beef quality of JB and other breeds.

A comparison of metabolomic changes in type-1 diabetic C57BL/6N mice originating from different sources

  • Lee, Seunghyun;Kwak, Jae-Hwan;Kim, Sou Hyun;Yun, Jieun;Cho, Joon-Yong;Kim, Kilsoo;Hwang, Daeyeon;Jung, Young-Suk
    • Laboraroty Animal Research
    • /
    • 제34권4호
    • /
    • pp.232-238
    • /
    • 2018
  • Animal models have been used to elucidate the pathophysiology of varying diseases and to provide insight into potential targets for therapeutic intervention. Although alternatives to animal testing have been proposed to help overcome potential drawbacks related to animal experiments and avoid ethical issues, their use remains vital for the testing of new drug candidates and to identify the most effective strategies for therapeutic intervention. Particularly, the study of metabolic diseases requires the use of animal models to monitor whole-body physiology. In line with this, the National Institute of Food and Drug Safety Evaluation (NIFDS) in Korea has established their own animal strains to help evaluate both efficacy and safety during new drug development. The objective of this study was to characterize the response of C57BL/6NKorl mice from the NIFDS compared with that of other mice originating from the USA and Japan in a chemical-induced diabetic condition. Multiple low-dose treatments with streptozotocin were used to generate a type-1 diabetic animal model which is closely linked to the known clinical pathology of this disease. There were no significantly different responses observed between the varying streptozotocin-induced type-1 diabetic models tested in this study. When comparing control and diabetic mice, increases in liver weight and disturbances in serum amino acids levels of diabetic mice were most remarkable. Although the relationship between type-1 diabetes and BCAA has not been elucidated in this study, the results, which reveal a characteristic increase in diabetic mice of all origins are considered worthy of further study.

Artomyces microsporus의 배양적 특성과 균사 적정 배양 조건 설정 (Culture Characteristics and Optimal Conditions for Mycelial Growth of Artomyces microsporus)

  • 민경진;이은지;박혜성;이찬중
    • 한국균학회지
    • /
    • 제49권1호
    • /
    • pp.45-55
    • /
    • 2021
  • 본 연구에서는 A. microsporus의 최적 배양 조건을 구명하고자 하였다. A. microsporus 균사체의 효율적 배양을 위한 조건은 최적 배양 온도 25℃, pH 5.0, 탄소원 soluble starch 1%, 유기질소원 malt extract 1%, 무기질소원 NH4H2PO4 0.1%, 아미노산 asparatic acid 0.1% 조건으로 선발되었고 유기산, 무기염류 첨가 시 균사생육이 저조해지는 영향을 주어 선발되지 않았다. 새로이 SMNA로 명명한 A. microsporus의 최적 배지는 기존의 PDA 배지 상에서 배양한 결과와 비교하였을 때, 균사의 생육이 균일하고 안정적이며 배양 기간을 15.1% 정도 단축하는 효과가 있었다. SMNA 배지는 추후 A. microsporus의 균사체 배양 방법에 널리 활용될 수 있을 것으로 판단된다.

이중초음파에서 드물게 관찰되는 목 부위의 혈관질환: 3례 (Cervical Vascular Diseases Rarely Observed by Duplex Sonography: 3 Cases)

  • 한민호;서강식;최정혜
    • 대한임상검사과학회지
    • /
    • 제53권1호
    • /
    • pp.131-136
    • /
    • 2021
  • 이중초음파는 반복적으로 검사를 실시할 수 있고, 비교적 저렴하기 때문에 다양한 진료분야에서 널리 이용되고 있다. 그중, 목동맥이중초음파는 뇌혈관질환을 진단하고 예후를 예측하는데 매우 유용한 비침습적 검사이다. 임상에서 목동맥이중초음파의 소요시간을 줄이고 결과의 정확성을 높이는 것은 매우 중요한 작업이다. 일반적으로 환자의 정보를 미리 숙지하는 것만으로도 신속히 정확한 검사를 수행할 수 있다. 하지만 예상과 달리 새롭게 발견되는 목 혈관질환으로 인해 검사하는데 종종 어려움을 겪기도 한다. 따라서 목 부위에서 발생할 수 있는 다양한 증례들을 숙지하는 것은 신속히 정확한 검사결과를 산출하는데 큰 도움이 될 것이다. 이러한 맥락에서, 본 연구는 목동맥이중초음파를 시행하던 중 예기치 않게 발견된 목 혈관질환 증례 3가지를 소개하고자 한다. 증례1. 속목동맥 폐색과 바깥목동맥으로부터 분지된 대뇌혈관; 증례 2. 속목정맥에서 관찰된 혈전; 증례 3. 척추동맥에서 관찰된 미세색전.

가지 달린 구조의 폴리실라잔을 전구체로 이용해 제조한 카본 나노튜브/실리콘 카보나이트라이드 복합체 시트의 발열특성에 관한 연구 (A Study on Heating Element Properties of Carbon Nanotube/Silicon Carbonitride Composite Sheet using Branched Structured Polysilazane as Precursor)

  • 허태환;송현준;정영진;곽영제
    • Composites Research
    • /
    • 제33권6호
    • /
    • pp.395-400
    • /
    • 2020
  • 본 연구에서는 카본나노튜브(CNT) 면상발열체에 preceramic polymer 중 하나인 실세스퀴아잔을 코팅하여 고온에서 안정적인 발열이 가능한 CNT/SiCN 복합체 시트를 제조하였다. 제조된 복합체 필름은 FE-SEM을 통해 실세스퀴아잔이 CNT 면상발열체의 표면을 모두 코팅한 것을 확인하였다. 또한 800℃의 열처리를 통해 실세 스퀴아잔이 SiCN 세라믹으로 전환되어도 표면의 결함이 발견되지 않고 온전한 구조를 유지하는 것을 확인하였다. CNT/SiCN 복합체 시트는 질소와 공기 분위기 모두에서 기존의 CNT 시트보다도 높은 열적 안정성을 확보할 수 있었다. 마지막으로 제조된 CNT/SiCN 복합체 필름은 대기 중에서 700℃ 이상의 온도로 발열이 가능하였고 발열 후 온도를 식히고 재발열 또한 성공적으로 이루어졌다.

Arabinoxylo- and Arabino-Oligosaccharides-Specific α-ʟ-Arabinofuranosidase GH51 Isozymes from the Amylolytic Yeast Saccharomycopsis fibuligera

  • Park, Tae Hyeon;Choi, Chang-Yun;Kim, Hyeon Jin;Song, Jeong-Rok;Park, Damee;Kang, Hyun Ah;Kim, Tae-Jip
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권2호
    • /
    • pp.272-279
    • /
    • 2021
  • Two genes encoding probable α-ʟ-arabinofuranosidase (E.C. 3.2.1.55) isozymes (ABFs) with 92.3% amino acid sequence identity, ABF51A and ABF51B, were found from chromosomes 3 and 5 of Saccharomycopsis fibuligera KJJ81, an amylolytic yeast isolated from Korean wheat-based nuruk, respectively. Each open reading frame consists of 1,551 nucleotides and encodes a protein of 517 amino acids with the molecular mass of approximately 59 kDa. These isozymes share approximately 49% amino acid sequence identity with eukaryotic ABFs from filamentous fungi. The corresponding genes were cloned, functionally expressed, and purified from Escherichia coli. SfABF51A and SfABF51B showed the highest activities on p-nitrophenyl arabinofuranoside at 40~45℃ and pH 7.0 in sodium phosphate buffer and at 50℃ and pH 6.0 in sodium acetate buffer, respectively. These exoacting enzymes belonging to the glycoside hydrolase (GH) family 51 could hydrolyze arabinoxylo-oligosaccharides (AXOS) and arabino-oligosaccharides (AOS) to produce only ʟ-arabinose, whereas they could hardly degrade any polymeric substrates including arabinans and arabinoxylans. The detailed product analyses revealed that both SfABF51 isozymes can catalyze the versatile hydrolysis of α-(1,2)- and α-(1,3)-ʟ-arabinofuranosidic linkages of AXOS, and α-(1,2)-, α-(1,3)-, and α-(1,5)-linkages of linear and branched AOS. On the contrary, they have much lower activity against the α-(1,2)- and α-(1,3)-double-substituted substrates than the single-substituted ones. These hydrolases could potentially play important roles in the degradation and utilization of hemicellulosic biomass by S. fibuligera.