• Title/Summary/Keyword: braking blending

Search Result 16, Processing Time 0.03 seconds

A Technique Study for Improve the Precise Position Stopping of Automatic Train Operation (ATO) Train Vehicle in Urban Railway (도시철도 자동운전 차량의 정밀정차 향상을 위한 기법 연구)

  • Ma, Sang-Kyeon;Heo, Dae-Jeung;Kim, Myung-Hwan;Song, Jae-Cheong;Park, Jun-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1049-1058
    • /
    • 2011
  • This paper suggests blending time adjusting method of braking command characteristics management and Set value test for optimizing of braking deceleration to enhance the precise position stopping. This method minimizes pneumatic-braking degree deviation by characteristics management, and secures braking stability at braking. By Set value test method, braking blending characteristics are analyzed accurately. And by optimal timing tuning at braking blending, It enhanced the precise position stopping with stabilization of deceleration To demonstrate the usefulness of these suggestion, I modeled for Deajeon Line #1. And through comparison with case of related companies, the proposed method which this paper suggested is proved to be superior to others.

  • PDF

A Study on Velocity-Brake Force Resulted from Deceleration Signal (감속도 신호에 의한 속도-제동력 고찰)

  • Lee, U-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.616-620
    • /
    • 2003
  • Brake action is important in train operation. In case of diesel motor cas, coachs and wagon, the brake system is only act on the stop of train, but it is emphasis on safety and convenience in urban transit system such as EMU, subwar, AGT, etc. Brake of EMU has two types. one is called service brake that is used at normal operation. The other is called emergency brake. it is used at emergency operation. Service brake bring a EMU to a halt through a blending brake that form electronic brake and frictional brake. Generally EMU compose motor car and trailer car. Blending brake bring a EMU to a halt through a blending brake that form electronic brake of motor car and frictional brake of trailer car. Blending braking technology have different characteristics each nations or manufacturing companies. but deceleration command that is parameter decide blending brake. According to deceleration command, electronic brake and frictional brake are applied differently So braking power is different. electronic brake and frictional brake must be used appropriately as deceleration command. Also braking facilities must be stopped EMU more economically and safely through revision of algorism about blending brake according to output diagram. Thus The purpose of paper is to propose blending braking control way as consideration of braking output diagram used deceleration command that influence blending brake of EMU.

  • PDF

The Effect of Regenerative Energy Storage System on Stabilization of Electro-Pneumatic Braking Blending (회생에너지 저장시스템이 제동 브랜딩 안정화에 미치는 영향)

  • Kim, Kyu-Joong;Lee, Keun-Oh
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.5
    • /
    • pp.15-21
    • /
    • 2010
  • Regenerative Energy Storage System(ESS) is a system that saves regenerative energy which generated instantly in the regenerative braking of Electric Multiple Unit(EMU) and disappear, and reuse the stored energy when EMU is in powering. Such system related to a research field of renewable energy which emerged concerning climate change and high oil prices. In the case of existing domestic rolling stock, about 25% to 30% of generated regenerative energy is restored to power source and is regarded as direct factor of raising catenary voltage. Such rapid change of catenary voltage is a cause of the failure of EMU's electronic equipment and lowering its reliability and is also a cause of train's fault occurred by tripping circuit breaker. In this paper, we intend to investigate the effect on blending characteristics of electric-braking and pneumatic-braking whether the regenerative energy storage system is used or not in urban transit DC 1,500V feeding system, while trains run. And we also intend to investigate its effect on stabilization of the blending, fluctuation of catenary voltage and various electric equipments.

Optimization of Disc Braking Force pattern from the viewpoint of Braking Energy (제동에너지 관점에서의 최적 디스크 제동력 패턴 설정)

  • Kim, Young-Guk;Park, Chan-Kyoung;Kim, Ki-Hwan;Kim, Seog-Won
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.294-299
    • /
    • 2006
  • Korean high speed train(HSR-350x) has adopted a combined electrical and mechanical(friction) braking system. Brake blending control unit(BBCU) controls each brake system to fulfill the required brake performances such as braking distance, deceleration and jerk. When the disc brake is applied in the high speed region, the wear of pad is increased rapidly. In this paper, we discuss the optimized patterns of the disc brake force from the view point of braking energy.

  • PDF

Brake Force simulation of a High Speed Train Using a Dynamic Model (동적 모델에 의한 고속전철의 제동력 시뮬레이션)

  • Lee, Nam-Jin;Kang, Chul-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.46-53
    • /
    • 2002
  • The brake system of a high speed train has a crucial role for the safety of the train. To develop a safe brake system of the high speed train, it is necessary to understand the braking principle and phenomena of the total brake system and its subsystems. In this paper, we have suggested a mathematical model which includes car dynamics, interactions between cars, adhesive forces, brake blending algorithm, and the dynamics of each brake devices. Also, we have proposed a ready-time compensation algorithm of eddy-current brake system and a brake control logic on electric-pneumatic blending. A simulation study has shown the proposed models and algorithms are effective on the braking of the train.

Analysis of the Regenerative Braking Effect to the Urban Transit Vehicles (도시철도차량의 회생제동력 분담 효과 분석)

  • Woo, Jong-Hyuk;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1900-1906
    • /
    • 2016
  • Recent energy efficiency policy of green growth for stable power supply is required. Urban transit vehicles is limited to reduce the use of power without reducing the number of runs. Accordingly, when urban rail vehicles is braking, the occurrence of regenerative power is systemically maximized for the purpose of saving energy. As a result when it is braking, the generated power efficiently is used and looking for a way to reduce the electrical energy. In this paper, the brake control system of the Subway Line 3 is analyzed the effect to meet the required regenerative braking produced electricity through minimizing air braking force of service braking.

HILS of the Braking System of a High Speed Train (고속전철 제동시스템의 HILS)

  • Hwang, Won-Ju;Kang, Chul-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.432-437
    • /
    • 2001
  • Korea High Speed Train(KHST) is supposed to run up 350km/h, in which the braking system has a crucial role for the safety of the train. In the design st데 of the braking system, its very hard to ac-quire information data for design guidelines. A HILS(Hardware-In-the-Loop Simulation) system can be used to get design data which could simulate the braking system of the real train in real-time. In this paper, cars are modelled including car dynamics, brake blending algorithms, pneumatic actuator dynamics, the models of each braking devices, adhesive coefficients, and soon. Real-time braking time, distance, and other design parameters are simulated using a DSP board and C language which shows the validity of the proposed method.

  • PDF

A study on the Characteristics of Braking for High Speed Train through On-line Test (시운전시험을 통한 고속철도 차량의 제동 특성에 관한 연구)

  • 김석원;김영국;박찬경;목진용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.212-217
    • /
    • 2004
  • In general, the braking system of high speed train has an important role for the safety of the train. To stop safely train at its pre-decided position, it is necessary to combine properly the various brakes. The prototype of Korean high speed train (KHST) has been designed, fabricated and tested by the domestic researchers. It has adopted a combined electrical brakes, such as rheostatic brake, regenerative brake and eddy current brake, and mechanical brakes composed of disc brake, wheel disc brake and tread brake. In this paper, the performances and control algorithms of braking system have been reviewed by the experimental method.

  • PDF

A Study on the Measuring Method of Disc Braking Force for HSR 350x (한국형 고속전철의 디스크 제동력 측정 방법에 관한 연구)

  • Kim, Seog-Won;Kim, Young-Guk;Park, Tae-Won
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.244-251
    • /
    • 2004
  • In general, the braking system of high speed train has an important role for the safety of the train. To stop safely the train at its pre-decided position, it is necessary to combine properly the various brakes. Korean high speed train (HSR 350x) has adopted a combined electric and mechanic (friction) braking system. Electric brakes are consist of rheostatic brake, regenerative brake and eddy current brake and mechanical brakes are composed of disc brake, wheel disc brake and tread brake. In this paper, the measuring method that can take a measurement of the braking forces for disc brake and wheel disc brake has been suggested and we have verified that this method is valid through on-line test of HSR 350x.

The Functional Analysis of Blending Brake Control for Stanrard EMU (표준전동차 혼합제동 기능분석 연구)

  • Lee, Woo-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.466-467
    • /
    • 2008
  • There are many new technologies for EMU to secure the facilities' safety/validity and maintenance/economical efficiency and technologic competitiveness. For example, now the EMU is using the blending brake technology with electric brake and pneumatic brake and carrying the various performances such as jerk limitation, variable load and blending brake to stop the motor car safely and efficiently. The blending brake takes important parts in braking the cars and It is used in many fields of urban transit. There were many limitations to carry the performances and certificate whether the performances are acceptable in the system or not, because at that time they didn't take the whole prelieminarly inspection. Now we start applying such new methods, taking the whole inspection prior to the installation by analyzing systems requirements and introducing various system engineering design tools. In this paper, we suggest how to reduce the errors by prelieminarly inspection for the brake facilities using the tools and inspect the needs to analyze the brake facilities' performances.

  • PDF