• Title/Summary/Keyword: brake dynamometer

Search Result 114, Processing Time 0.031 seconds

Braking Efficiency Calculation of Antiskid Brake System of a Fixed-Wing Aircraft (Dynamometer 시험을 통한 ABS 효율 계산)

  • Lee, Ki-Chang;Jeon, Jeong-Woo;Hwang, Don-Ha;Kom, Yong-Joo;Gu, Dae-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.222-224
    • /
    • 2005
  • In the development of Antiskid Brake System(ABS) for a fixed-wing aircraft, the braking efficiency is the most essential parameters to evaluate the ABS, especially in slippery road conditions. The braking distance and landing distance of the aircraft depends on it. Since the ABS has been designed and implemented as a subsystem of the aircrafts, the braking performance was evaluated under dynamometer test, where the dynamometer emulates the aircraft mass. Under simulated wet road conditions, the dynamometer starts to be braked. This paper suggests practical braking efficiency calculation methods and the results and finally compares each method.

  • PDF

Dynamometer Test Procedure of Metal Brake Pad for Part 25 Aircraft (수송류 항공기용 금속계 제동패드의 다이나모시험 절차)

  • Min-ji Kim;Kyung-il Kim;Kyung-taek Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.821-827
    • /
    • 2023
  • In this study, the aircraft technical standards of the Korea and the United States were analyzed to derive the dynamometer test procedure required to prove the compatibility for flight test certification of the metal brake pad for transport aircraft. Since the design modification of the brake systems is classified as a major change, the STC(Supplemental Type Certificate) and the PMA(Parts Manufacturer Approval) are required. In accordance with the TSO-C135a, the technical standard order for brake system in the United States, the design landing-stop test, accelerate-stop test, and most severe landing stop test were selected among the test items for flight test. The conditions for the dynamometer test are determined according to the specifications provided by aircraft manufacturer, and the brake pad condition, deceleration, and the number of test are defined according to the TSO-C135a.

Robust Design of the Disc Brake Pad Shape for Reduction of Uneven Wear (디스크 브레이크의 편마모 저감을 위한 브레이크 패드의 마찰재 형상 강건설계)

  • Park, Jin-Tack;Choi, Nak-Sam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.77-87
    • /
    • 2012
  • In this paper, the method and its effectiveness to decrease the uneven wear of the brake pad were proposed. A finite element analysis was performed to analyze the pressure distributions on the contact surfaces. The optimum brake pad shape was determined by a robust design using the Taguchi method. The effectiveness of the optimum design was clarified by the wear tests with a dynamometer.

Robust Design of the Back-plate Shape of the Disc Brake Pad for Reduction of Uneven Wear (디스크 브레이크의 편마모 저감을 위한 브레이크 패드의 백플레이트 형상 강건설계)

  • Park, Jin-Tack;Han, Seung-Wook;Choi, Nak-Sam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.8-19
    • /
    • 2014
  • In this paper, a robust design of the back-plate of the brake pad to decrease the uneven wear of the pad was studied. A finite element analysis was performed to analyze the pressure distributions on the contact surfaces. Optimized back-plate shape of the brake pad was determined using the Taguchi method. The effectiveness of the robust design was clarified by the wear tests with a dynamometer.

The Braking Performance Evaluation of Al-MMC Brake Drum Using the Dynamometer (다아나모 실험을 통한 Al-MMC 브레이크 드럼의 제동성능 평가)

  • 윤영식;유승을;한범석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.733-736
    • /
    • 2002
  • This study was carried out to investigate the braking performances associated with the friction coefficients and temperature fluctuations. Friction coefficient stability and maximum temperature of brake drums, made of an Al-MMC and conventional cast iron, were tested by the inertial brake dynamometer during 15 braking operations. Also the temperature distribution was analyzed by the finite element analysis(FEA). In this experiment, both lower temperature rise near the drum surface and less variation of friction coefficient, compared to those of cast iron, were observed with Al-MMC drums during braking operations.

  • PDF

A Study on the Analysis of Squeal Noise for Brake Design (저소음 브레이크 설계를 위한 스퀼 노이즈 해석기법 연구)

  • Kwon, Seong-Jin;Kim, Chan-Jung;Lee, Bong-Hyun;Na, Byung-Chul;Kim, Hyun-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.320-325
    • /
    • 2006
  • The phenomenon of squeal in disc brakes has been, and stin is, a problem for the automotive industry. Extensive research has been done in an attempt to understand the mechanisms that cause it and in developing design procedures to reduce it to make vehicles more comfortable. In this paper, the study on squeal noise of disc brake is performed using complex eigen-value analysis, The first part describes the chassis-dynamometer and the testing procedure, and second part explains how the analysis is performed and shows some of the results from typical squeal tests. Finally, to reduce squeal nose of disc brake is investigated by the effects of brake design parameter.

  • PDF

A Study on the Cross-drilling Effects of Brake Disc Rotor (브레이크 디스크 로터 표면 수직 구멍의 영향에 관한 연구)

  • Seo, Young-Jin;Oh, Je-Ha;Lee, Jun-Sang;Kang, Kyoung-Soo;Jung, Geun-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.100-105
    • /
    • 2008
  • Cross-drilling on the brake disc is generally known as a way of improving cooling efficiency. In other theories, cross-drilled holes act like a path of gas or water and are also known that they can reduce fading and wetting of brake rotors. However, in disc rotors with cross-drilling, thermal crack phenomena have been reported more frequently and more manufacturing cost should be paid than non cross-drilled disc rotors. In this study, to examine various effects of cross-drilling on the brake disc, two kinds of brake disc rotors, cross-drilled and non cross-drilled, were used in computational fluid dynamic analyses and dynamometer tests.

Experimental Analysis on Brake Squeal Noise Due to Disk Misalignment (디스크 정렬불량에 기인한 브레이크 스퀼소음의 실험해석)

  • 박주표;최연선
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.118-124
    • /
    • 2004
  • To investigate the mechanics of brake squeal noise, the sound and vibration of an actual brake system was measured using a brake dynamometer. The experimental results show that disk run-out due to the misalignment of brake disk varies with brake line pressure and becomes the important factor of brake squeal noise generation. Also, it was confirmed that the frequency of the squeal noise equals to the natural frequency of the disk bending mode.

AN AUTOMATED TEST FACILITY FOR EVALUATING FRICTION MATERIAL FOR AUROMOTINE-TYPE DISC BRAKES

  • Hancke, G.P.;Zietsman, R.E.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.776-780
    • /
    • 1989
  • A constant torque dynamometer with associated instrumentation and control functions for the development of friction materials for automotive-type disc brakes, has been developed. Full scale disc pads are subject to a series of intermittent brake applications at a constant rotational speed of the brake disc and constant braking power. This paper gives a description of the dynamometer and an example of results obtained.

  • PDF

Effect of the Design Parameters Change on the Hybrid Dynamometer Braking Performance (혼성동력계에서 주요 설계변수가 제동성능에 미치는 효과분석)

  • Lee, Jong-Hoon;Hwang, Jai-Hyuk;Jeong, Min-Ji;Kwon, Jun-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.981-988
    • /
    • 2016
  • Dynamometer is a device for testing the performance of the brake and it is composed of a test zone, the mechanical inertia zone, the electric motor and the control zone. Hybrid dynamometer is a way to compensate for the loss of mechanical inertia in accordance with the brake operation by using an electric motor to reduce the size of the mechanical inertia with the advantage that can be tested in the relatively small size of the mechanical inertia and low cost. In this paper, design the proper size of hybrid dynamometer in the laboratory level with the space constraints, analysed the effect of critical parameter on the braking performance of hybrid dynamometer such as changing the friction coefficient. With this study, could get the results of guideline to judge the poor friction material by measuring the torque of the electric motor to compensate the energy loss due to a reduced mechanical inertia.