• Title/Summary/Keyword: brain structure

Search Result 407, Processing Time 0.028 seconds

A Rare Case of Primary Thymic Adenocarcinoma Mimicking Small Cell Lung Cancer

  • Cho, Eun Na;Park, Hye Sung;Kim, Tae Hoon;Byun, Min Kwang;Kim, Hyung Jung;Ahn, Chul Min;Chang, Yoon Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • 제78권2호
    • /
    • pp.112-119
    • /
    • 2015
  • Primary thymic adenocarcinoma is a very rare malignancy of the anterior mediastinum with no standardized treatment. A 36-year-old male patient presented with hoarseness over the past 3 months. A chest computed tomography (CT) scan showed an infiltrative mass to the proximal vessels and aortic arch in left upper mediastinum ($4.1{\times}3.1{\times}5.4cm$). Brain magnetic resonance imaging (MRI) showed focal lesions, suggesting metastasis in the left frontal lobe. A thoracoscopic biopsy of the mediastinal mass confirmed a primary thymic adenocarcinoma forming a glandular structure with atypia of tumor cells. The patient received four cycles of systemic chemotherapy, consisting of etoposide and cisplatin, with concurrent radiotherapy (6,000 cGy/30 fractions) to the mediastinal lesion and the metastatic brain lesion (4,200 cGy/12 fractions). A follow-up chest CT scan and brain MRI showed a decrease in the size of the left upper mediastinal mass and brain lesion. We report a rare case of the primary thymic adenocarcinoma with a literature review.

Classifying Instantaneous Cognitive States from fMRI using Discriminant based Feature Selection and Adaboost

  • Vu, Tien Duong;Yang, Hyung-Jeong;Do, Luu Ngoc;Thieu, Thao Nguyen
    • 스마트미디어저널
    • /
    • 제5권1호
    • /
    • pp.30-37
    • /
    • 2016
  • In recent decades, the study of human brain function has dramatically increased thanks to the advent of Functional Magnetic Resonance Imaging. This is a powerful tool which provides a deep view of the activities of the brain. From fMRI data, the neuroscientists analyze which parts of the brain have responsibility for a particular action and finding the common pattern representing each state involved in these tasks. This is one of the most challenges in neuroscience area because of noisy, sparsity of data as well as the differences of anatomical brain structure of each person. In this paper, we propose the use of appropriate discriminant methods, such as Fisher Discriminant Ratio and hypothesis testing, together with strong boosting ability of Adaboost classifier. We prove that discriminant methods are effective in classifying cognitive states. The experiment results show significant better accuracy than previous works. We also show that it is possible to train a successful classifier without prior anatomical knowledge and use only a small number of features.

Stay or Return?: Key Decision Factors of Foreign STEM Talents in Korea

  • Kim, Jungbu;Oh, Seong Soo
    • STI Policy Review
    • /
    • 제5권2호
    • /
    • pp.43-64
    • /
    • 2014
  • Korea has pursued an aggressive policy of inviting more foreign-born students to its universities since the late 1990s in the wake of the globalization of education markets and its changing demographic structure. While increasingly more students from Asia come to Korea for study, more than half of the graduates return home upon graduation. Given the issues of brain drain, brain circulation, and knowledge transfer that are raised by such a high return rate, this paper examines the factors that frame the foreign students' decision on their post-graduation careers. By analyzing survey data, we report that Asian students majoring in science, technology, engineering, and mathematics (STEM) are more likely to return than non-STEM majors. This suggests that Korea's aggressive policies of inviting foreign-born students have contributed to brain circulation and knowledge transfer between Korea and the other Asian countries. We also find that scholarships from Korean sources and positive attitudes toward Korean culture and life increase their inclination to stay in the country upon graduation. These findings, however, raise more questions than answers, since it becomes obvious that their post-graduation decisions are highly affected by what Korea as a society provides.

Recent update on reading disability (dyslexia) focused on neurobiology

  • Kim, Sung Koo
    • Clinical and Experimental Pediatrics
    • /
    • 제64권10호
    • /
    • pp.497-503
    • /
    • 2021
  • Reading disability (dyslexia) refers to an unexpected difficulty with reading for an individual who has the intelligence to be a much better reader. Dyslexia is most commonly caused by a difficulty in phonological processing (the appreciation of the individual sounds of spoken language), which affects the ability of an individual to speak, read, and spell. In this paper, I describe reading disabilities by focusing on their underlying neurobiological mechanisms. Neurobiological studies using functional brain imaging have uncovered the reading pathways, brain regions involved in reading, and neurobiological abnormalities of dyslexia. The reading pathway is in the order of visual analysis, letter recognition, word recognition, meaning (semantics), phonological processing, and speech production. According to functional neuroimaging studies, the important areas of the brain related to reading include the inferior frontal cortex (Broca's area), the midtemporal lobe region, the inferior parieto-temporal area, and the left occipitotemporal region (visual word form area). Interventions for dyslexia can affect reading ability by causing changes in brain function and structure. An accurate diagnosis and timely specialized intervention are important in children with dyslexia. In cases in which national infant development screening tests have been conducted, as in Korea, if language developmental delay and early predictors of dyslexia are detected, careful observation of the progression to dyslexia and early intervention should be made.

뇌질환 연구 동향 조사 및 턱관절 장애 관련 뇌질환 기전 연구의 필요성 (A Study on Brain Disease Research Trends and Need to Conduct Mechanism Studies on Temporomandibular Joint Disorder Related Cerebrovascular Diseases)

  • 이세은;이민지;이병호;임세현;조수인
    • 턱관절균형의학회지
    • /
    • 제8권1호
    • /
    • pp.11-15
    • /
    • 2018
  • Recently, clinical efficacies of the intraoral balancing appliance therapy have been reported by several researchers, and it has been found that there are various kinds of diseases that can be effectively applied. However, studies on cerebrovascular disease, one of the main diseases with a high mortality rate, are still poorly reported, and studies of temporomandibular joint disorder (TMD)-induced changes in brain function suggest that cerebrovascular disease is more appropriate as an adaptive disorder of the temporomandibular joint (TMJ) balancing device. In the developed countries, the importance of research on the structure and function of the brain has been recognized and spurred on the related research. In Korea, the research on brain function and cognitive disorders should have promoted more massively. In order to regain its former reputation in the Korean medicine in the field of cerebrovascular disease, it should be spurred on basic research and clinical case studies. In addition, extensive and in-depth studies including animal studies are needed to establish the basis of underlying mechanisms of the TMJ balancing therapies.

  • PDF

쥐에서 말초 자극에 따른 뇌피질 활성화의 자기공명 영상 (MR imaging of cortical activation by painful peripheral stimulation in rats)

  • 이배환;차명훈;정재준;이규홍;이철현;손진훈
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2009년도 추계학술대회
    • /
    • pp.183-185
    • /
    • 2009
  • As imaging technology develops, magnetic resonance imaging (MRI) techniques have contributed to the understanding of brain function by providing anatomical structure of the brain and functional imaging related to information processing. Manganese-enhanced MRI (MEMRI) techniques can provide useful information about functions of the nervous system. However, systematic studies regarding information processing of pain have not been conducted. The purpose of this study was to detect brain activation during painful electrical stimulation using MEMRI with high spatial resolution. Male Sprague-Dawley rats (250-300 g) were divided into 3 groups: normal control, sham stimulation, and electric stimulation. Rats were anesthetized with 2.5% isoflurane for surgery. Polyethylene catheter (PE-10) was placed in the external carotid artery to administrate mannitol and MnCl2. The blood brain barrier (BBB) was broken by 20% D-mannitol under anesthesia mixed with urethane and a-chloralose. The hind limb was electrically stimulated with a 2Hz (10V) frequency while MnCl2 was infused. Brain activation induced by electrical stimulation was detected using a 4.7 T MRI. Remarkable signal enhancement was observed in the primary sensory that corresponds to sensory tactile stimulation at the hind limb region. These results suggest that signal enhancement is related to functional activation following electrical stimulation of the peripheral receptive field.

  • PDF

Synthesis and Biological Evaluation of Novel GSK-3β Inhibitors as Anticancer Agents

  • Choi, Min-Jeong;Oh, Da-Won;Jang, Jae-Wan;Cho, Yong-Seo;Seo, Seon-Hee;Jeong, Kyu-Sung;Ko, Soo-Young;Pae, Ae-Nim
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권6호
    • /
    • pp.2015-2020
    • /
    • 2011
  • A series of isoxazol-indolin-2-one was designed for GSK-3${\beta}$ inhibitors as novel anticancer agents based on their binding mode analysis in GSK-3${\beta}$ crystal structure. Total 21 compounds were synthesized and evaluated for their inhibitory activity against two tumor cell lines (DU145 and HT29). Most of the synthesized compounds were potent with above 80% inhibitory activity at 100 ${\mu}M$, and several compounds were examined for inhibitory activity against GSK-3${\beta}$. Among them, 15(Z) ($R_1$=H, $R_2$=3-Cl-phenyl) was most active with 78% inhibition of tumor cell line (HT29) at 20 ${\mu}M$ and 72% inhibition of GSK-3${\beta}$ at 20 ${\mu}M$.

The Epithelial-Mesenchymal Transition During Tooth Root Development

  • Kang, Jee-Hae;Park, Jin-Ho;Moon, Yeon-Hee;Moon, Jung-Sun;Kim, Sun-Hun;Kim, Min-Seok
    • International Journal of Oral Biology
    • /
    • 제36권3호
    • /
    • pp.135-141
    • /
    • 2011
  • Hertwig's epithelial root sheath (HERS) consists of bi-layered cells derived from the inner and outer dental epithelia and plays important roles in tooth root formation as well as in the maintenance and regeneration of periodontal tissues. With regards to the fate of HERS, and although previous reports have suggested that this entails the formation of epithelial rests of Malassez, apoptosis or an epithelial-mesenchymal transformation (EMT), it is unclear what changes occur in the epithelial cells in this structure. This study examined whether HERS cells undergo EMT using a keratin-14 (K14) cre:ROSA 26 transgenic reporter mouse. The K14 transgene is expressed by many epithelial tissues, including the oral epithelium and the enamel organ. A distinct K14 expression pattern was found in the continuous HERS bi-layer and the epithelial diaphragm were visualized by detecting the ${\beta}$-galactosidase (lacZ) activity in 1 week postnatal mice. The 2 and 4 week old mice showed a fragmented HERS with cell aggregation along the root surface. However, some of the lacZ-positive dissociated cells along the root surface were not positive for pan-cytokeratin. These results suggest that the K14 transgene is a valuable marker of HERS. In addition, the current data suggest that some of the HERS cells may lose their epithelial properties after fragmentation and subsequently undergo EMT.

Ti-30Ta-(3~15)Nb 합금에 HA/Ti 복합 코팅한 표면의 교류임피던스 특성 (A.C. Impedance Properties of HA/Ti Compound Layer coated Ti-30Ta-(3~15)Nb Alloys)

  • 정용훈;이호종;문영필;박근형;장승현;손미경;최한철
    • 한국표면공학회지
    • /
    • 제41권5호
    • /
    • pp.181-188
    • /
    • 2008
  • A.C. impedance properties of HA/Ti compound layer coated Ti-30Ta-($3{\sim}15$)Nb alloys have been studied by electrochemical method. Ti-30Ta binary alloys contained 3, 7, 10 and 15 wt% Nb were manufactured by the vacuum furnace system. And then specimen was homogenized at $1000^{\circ}C$ for 24 hrs. The sample was cut and polished for corrosion test and coating. It was coated with HA/Ti compound layer by magnetron sputter. The non-coated and coated morphology of Ti alloy were analyzed by X-ray diffractometer (XRD), energy X-ray dispersive spectroscopy (EDX) and filed emission scanning electron microscope (FE-SEM). The corrosion behaviors were investigated using A.C. impedance test (PARSTAT 2273, USA) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. Ti-30Ta-($3{\sim}15\;wt%$)Nb alloys showed the ${\alpha}+{\beta}$ phase, and $\beta$ phase peak was predominantly appeared in the case of increasingly Nb contents. The microstructures of Ti alloy were transformed from needle-like structure to equiaxed structure as Nb content increased. From the analysis of coating surface, HA/Ti composite surface uniformed coating layer with 750 nm thickness. The growth directions of film were (211), (112), (300) and (202) for HA/Ti composite coating on the surface after heat treatment at $550^{\circ}C$, whereas, the growth direction of film was (110) for Ti coating. The polarization resistance ($R_p$) of HA/Ti composite coated Ti-alloys were higher than those of the Ti and HA coated samples in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. Especially, corrosion resistance of Ti-Ta-Nb system increased as Nb content increased.

초고해상도 미세영상 기법을 이용한 Mouse 뇌의 자기공명영상 연구 (High-Resolution MRI Study on Mouse Brain Using Micro-Imaging)

  • 한덕영;윤문현;최보영
    • Investigative Magnetic Resonance Imaging
    • /
    • 제12권2호
    • /
    • pp.142-147
    • /
    • 2008
  • 목적 : 본 연구는 핵자기공명 분광기를 개조한 미세영상 기법을 이용하여, 동물실험에 주류를 이루는 mouse를 대상으로, 0.1 mm 이내의 초고해상도 자기공명영상을 5분 정도 시간 안에 획득할 수 있는 방법을 개발하고자 하였다. 대상 및 방법 : 사용된 mouse는 C57BL/6로서 무게 50 그램 이내의 mouse를 사용하였다. 본 연구에 활용된 초전도 자석은 구경 89 mm, 4.7 T의 자기장 세기를 가진 수직형 자석이며, 사용된 샘플 코일의 직경은 30 mm 이고, 사용된 펄스시퀀스는 fast spin echo (FSE) 및 gradient echo (GE) 기법들이다. 결과 : 최적의 자기공명영상 파라미터를 확보하면서 2차원 영상으로서 수소밀도 및 T2 강조 영상을 획득하였다. 영상으로부터 mouse 뇌의 미세부분까지 상세히 해부학적 구조를 확인할 수 있었고, 또한 입체적인 정보를 획득하기 위하여 3D 영상도 부가적으로 획득하였다. 조영제를 이용한 dynamic contrast 연구에 3D 영상이 매우 유용하였다. 결론 : 본 연구를 통하여 mouse 뇌에 대한 고해상도 자기공명영상 획득을 위한 최적의 파라미터를 확보할 수 있었고, 또한 성공적인 자기공명영상도 획득하였다. 즉, 사람이나 다른 소동물뇌의 경우와 같이 mouse 뇌 조직의 다양한 부위의 미세부분을 확인할 수 있는 충분한 고해상도의 영상을 획득하였다. 최근 국내에서 mouse를 이용한 자기공명영상 연구가 시작되었으나 아직 초기단계라고 평가할 수 있고, mouse는 다른 동물에 비하여 취급/관리하기 쉬우므로 향후 mouse를 이용한 뇌 연구가 활성화 될 것으로 사료된다.

  • PDF