• 제목/요약/키워드: brain structure

검색결과 407건 처리시간 0.02초

우울증과 전두엽 (Depression and the Frontal Lobe)

  • 채정호;이경욱;양완석;박원명;전태연;김광수
    • 생물정신의학
    • /
    • 제9권2호
    • /
    • pp.95-102
    • /
    • 2002
  • Objectives:Abnormalities in the frontal lobe have been consistently suggested in the pathophysiology of depression. The purpose of this review is to discuss the relationship between the frontal lobe and depression. Methods:Recent researches on the frontal lobe in depression were reviewed and abnormalities in this region were considered within the context of modern functional neuroanatomy. Results:This paper reviewed evidence strongly implicating the frontal lobe as a key brain structure in depression. Conclusion:Taken together, these abnormalities in the function of the frontal lobe implicate interconnected neural circuits in depression and offer suggestions for the themes of future research and treatment. Further research is needed to investigate the association between emotion and the brain in the paradigm of "affective neuroscience".

  • PDF

디자인 사고과정의 인지 과학적 해석 (A study on the Cognitive Scientific explanation for Design Ideation)

  • 박영목;이동연
    • 디자인학연구
    • /
    • 제21권
    • /
    • pp.1-12
    • /
    • 1997
  • 본 연구는 인지과학으로부터 몇 가지의 이론을 이용하여 디자인의 사고과정 중의 일부를 설명함으로서, 인지과학으로부터의 지식을 디자인의 문제 해결에 응용하거나, 새로운 사고 발상 방법을 개발할 수 있는 가능성을 모색하기 위한 것이다. 디자인은 복합적이고 고도의 두뇌활동을 필요로 하는 영역이다. 그리고 인지과학은 인간의 두뇌활동을 연구하는 학문이다. 따라서 디자인과 인지과학의 연결은 디자인의 거의 전반에 걸쳐 응용될 가능성을 가지고 있다. 그 연결 가능성을 살펴보기 위하여 본 논문은 주로 아이디어 발상부분에 대한 사고의 과정을 인지과학으로 부터의 지식을 빌어 설명하여 보았다. 디자인의 프로세스와 사고 발상 과정을 인지과학의 지식구조에 대한 이론으로 해석해 본 결과, 디자인 사고 발상의 새로운 전개 가능성을 찾을 수 있었다.

  • PDF

Isolation and Sequence Analysis of Two Ornithine Decarboxylase Antizyme Genes from Flounder (Paralichthys olivaceus)

  • LEE JAE HYUNG;SEO YONG BAE;YOON MOON YOUNG;CHOI JUNG DO;KIM YOUNG TAE
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권2호
    • /
    • pp.321-329
    • /
    • 2005
  • Ornithine decarboxylase (ODC) antizyme is a key regulatory protein in the control of cellular polyamines. We have isolated two distinct ODC antizyme cDNA clones (AZS and AZL) from a flounder (Paralichthys olivaceus) brain cDNA library. Their sequences revealed that both clones required translational frameshifting for expression. Taking + 1 frameshifting into account, AZS and AZL products were 221 and 218 amino acid residues long, respectively, and shared $83.3\%$ amino acid sequence identity. Comparison of the structure and nucleotide sequence of the antizyme genes showed that the genes were highly conserved in flounder, zebrafish, mouse, and human. A phylogenetic tree was constructed, based on the antizyme amino acid sequences from various species. The presence of the two types of antizyme mRNA species in brain, kidney, liver, and embryo was confirmed by using the reverse transcription­polymerase chain reaction (RT-PCR) and Northern blot analysis. Recombinant proteins of flounder ODC antizymes, containing His-Nus-S tag at the amino-terminus, were overexpressed as His-AZL and His-AZS fusion proteins in Escherichia coli BL21 (DE3) pLys by using the pET­44a(+) expression vector.

증가된 기계적 강도 및 양방향 신호 검출이 가능한 3차원 폴리이미드 기반 뉴럴 프로브 개발 (Development of 3-Dimensional Polyimide-based Neural Probe with Improved Mechanical Stiffness and Double-side Recording Sites)

  • 김태현;이기근
    • 전기학회논문지
    • /
    • 제56권11호
    • /
    • pp.1998-2003
    • /
    • 2007
  • A flexible but implantable polyimide-based neural implant was fabricated for reliable and stable long-term monitoring of neural activities from brain. The developed neural implant provides 3-dimensional (3D) $3{\times}3$ structure, avoids any hand handling, and makes the insertion more efficient and reliable. Any film curvature caused by residual stress was not observed in the electrode. The 3D flexible polyimide electrode penetrated a dense gel whose stiffness is close to live brain tissue, because a ${\sim}1{\mu}m$ thick nickel was electroplated along the edge of the shank in order to improve the stiffness. The recording sites were positioned at both side of the shank to increase the probability of recording neural signals from a target volume of tissue. Impedance remained stable over 72 hours because of extremely low moisture uptake in the polyimide dielectric layers. At electrical recording test in vitro, the fabricated electrode showed excellent recording performance, suggesting that this electrode has the potential for great recording from neuron firing and long-term implant performance.

Penalized logistic regression using functional connectivity as covariates with an application to mild cognitive impairment

  • Jung, Jae-Hwan;Ji, Seong-Jin;Zhu, Hongtu;Ibrahim, Joseph G.;Fan, Yong;Lee, Eunjee
    • Communications for Statistical Applications and Methods
    • /
    • 제27권6호
    • /
    • pp.603-624
    • /
    • 2020
  • There is an emerging interest in brain functional connectivity (FC) based on functional Magnetic Resonance Imaging in Alzheimer's disease (AD) studies. The complex and high-dimensional structure of FC makes it challenging to explore the association between altered connectivity and AD susceptibility. We develop a pipeline to refine FC as proper covariates in a penalized logistic regression model and classify normal and AD susceptible groups. Three different quantification methods are proposed for FC refinement. One of the methods is dimension reduction based on common component analysis (CCA), which is employed to address the limitations of the other methods. We applied the proposed pipeline to the Alzheimer's Disease Neuroimaging Initiative (ADNI) data and deduced pathogenic FC biomarkers associated with AD susceptibility. The refined FC biomarkers were related to brain regions for cognition, stimuli processing, and sensorimotor skills. We also demonstrated that a model using CCA performed better than others in terms of classification performance and goodness-of-fit.

MEG 복잡계 네트워크 분석에 대한 통계적 고찰 (Review of complex network analysis for MEG)

  • 신선한;김재희
    • 응용통계연구
    • /
    • 제36권5호
    • /
    • pp.361-380
    • /
    • 2023
  • Magnetoencephalography (MEG)는 뉴론 활동에 신경 세포들간 전류 흐름에 의해 유도된 자기장을 측정하는 비침습 뇌영상 기술이다. 기능적 뇌활동은 뇌영역간 또는 뉴런들의 연결로 기능적 연결로 수행된다. MEG 데이터는 상관성, 시공간성을 가지며 다중 다층적 동적 네트워크인 특징을 갖는다. 이러한 복잡성 때문에 MEG 네트워크에 대한 연구는 아직 많지 않은 편이다. 본 연구에서는 MEG 네트워크 모형과 분석법을 소개하고 실제 MEG 데이터 분석에 활용되어 해석된 경우를 요약하고 앞으로 MEG 네트워크 모형 개발 연구의 필요성을 설명하고자 한다. 그러므로 통계적 네트워크 분석이 뇌과학에서 신경학적 질병을 포함하여 뇌기능에 대한 이해에 중요한 역할을 할 수 있음을 알리고자 한다.

Distinctive contribution of two additional residues in protein aggregation of Aβ42 and Aβ40 isoforms

  • Dongjoon Im;Tae Su Choi
    • BMB Reports
    • /
    • 제57권6호
    • /
    • pp.263-272
    • /
    • 2024
  • Amyloid-β (Aβ) is one of the amyloidogenic intrinsically disordered proteins (IDPs) that self-assemble to protein aggregates, incurring cell malfunction and cytotoxicity. While Aβ has been known to regulate multiple physiological functions, such as enhancing synaptic functions, aiding in the recovery of the blood-brain barrier/brain injury, and exhibiting tumor suppression/antimicrobial activities, the hydrophobicity of the primary structure promotes pathological aggregations that are closely associated with the onset of Alzheimer's disease (AD). Aβ proteins consist of multiple isoforms with 37-43 amino acid residues that are produced by the cleavage of amyloid-β precursor protein (APP). The hydrolytic products of APP are secreted to the extracellular regions of neuronal cells. Aβ 1-42 (Aβ42) and Aβ 1-40 (Aβ40) are dominant isoforms whose significance in AD pathogenesis has been highlighted in numerous studies to understand the molecular mechanism and develop AD diagnosis and therapeutic strategies. In this review, we focus on the differences between Aβ42 and Aβ40 in the molecular mechanism of amyloid aggregations mediated by the two additional residues (Ile41 and Ala42) of Aβ42. The current comprehension of Aβ42 and Aβ40 in AD progression is outlined, together with the structural features of Aβ42/Aβ40 amyloid fibrils, and the aggregation mechanisms of Aβ42/Aβ40. Furthermore, the impact of the heterogeneous distribution of Aβ isoforms during amyloid aggregations is discussed in the system mimicking the coexistence of Aβ42 and Aβ40 in human cerebrospinal fluid (CSF) and plasma.

간질 환자와 의료인이 인지하는 간질 환자를 위한 교육 요구도 비교조사 (A Survey on the Difference in Perceptions on Educational Need in Patients with Epilepsy and Medical Personnel)

  • 최미리;김연희;소연자;윤선무;이근숙;임상순;김금순;최스미
    • 대한간호학회지
    • /
    • 제30권6호
    • /
    • pp.1400-1410
    • /
    • 2000
  • Purpose : To determine whether there is a discrepancy between the medical professions perception of what patients should know and that of the patients themselves, we studied patients need to be informed about different aspects of epilepsy and compared findings with medical personnels perceptions of the issue. Methods : Our study population consisted of 39 patients with epilepsy from the inpatient epilepsy unit, and 51patients from the outpatients clinic of the S. University Hospital between July and November 1997. However, the patients who declined to participate or who were not able to understand the directions and content of the questionnaire were excluded. The medical personnel participated in this study were 56 residents or nurses who were working in either Neurology or Neuro surgery Units. The questionnaire with 5 indicating the highest need. The data were analyzed with descriptive statistics, students t-tests, and chi-square. Results : Of the 90 patients and 56 medical personnel studied, the need for lifestyle information such as smoking, drinking, sleep, driving, employment, and marriage was significantly higher from medical personnel than that of the patients(p=0.00). Regarding medical knowledge about epilepsy, the patients group had higher scores in the need for information on the structure of the brain (p=0.00), whereas medical personnel had higher scores on the symptoms of epilepsy. There was no correlation between the length of epilepsy and the need for information on every item on the questionnaire. The patients had higher rank regarding diet, although it was not significantly different from the medical personnel. Regarding antiepileptic drugs and what to do when there is an attack, medical personnel scored higher. The items on which the patients group scored higher than 4.5 were the possibility of inheritance, the factors that might reduce the number of attacks, the period of usage of AED, and the food they have to avoid or the food they have to take to reduce seizure attacks. Conclusions : Our study indicates that the patients group requires higher educational need in the structure of the brain, diet, and surgical treatment, but less in lifestyles and what to do when there is an attack. The educational program for the patients with epilepsy should emphasize medical knowledge with regard to brain anatomy, what to eat and what to avoid, and details of surgical treatment.

  • PDF

Comparison of Microbial Diversity and Composition in the Jejunum and Colon of Alcohol-Dependent Rats

  • Fan, Yang;Ya-E, Zhao;Ji-dong, Wei;Yu-fan, Lu;Ying, Zhang;Ya-lun, Sun;Meng-Yu, Ma;Rui-ling, Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권11호
    • /
    • pp.1883-1895
    • /
    • 2018
  • Alcohol dependence is a global public health problem, yet the mechanisms of alcohol dependence are incompletely understood. The traditional view has been that ethanol alters various neurotransmitters and their receptors in the brain and causes the addiction. However, an increasing amount of experimental evidence suggests that gut microbiota also influence brain functions via gut-to-brain interactions, and may therefore induce the development of alcohol use disorders. In this study, a rat model of alcohol dependence and withdrawal was employed, the gut microbiota composition was analyzed by high-throughput 16S rRNA gene sequencing, and the metagenome function was predicted by PICRUSt software. The results suggested that chronic alcohol consumption did not significantly alter the diversity and richness of gut microbiota in the jejunum and colon, but rather markedly changed the microbiota composition structure in the colon. The phyla Bacteroidetes and eight genera including Bacteroidales S24-7, Ruminococcaceae, Parabacteroides, Butyricimonas, et al were drastically increased, however the genus Lactobacillus and gauvreauii in the colon were significantly decreased in the alcohol dependence group compared with the withdrawal and control groups. The microbial functional prediction analysis revealed that the proportions of amino acid metabolism, polyketide sugar unit biosynthesis and peroxisome were significantly increased in the AD group. This study demonstrated that chronic alcohol consumption has a dramatic effect on the microbiota composition structure in the colon but few effects on the jejunum. Inducement of colonic microbiota dysbiosis due to alcohol abuse seems to be a factor of alcohol dependence, which suggests that modulating colonic microbiota composition might be a potentially new target for treating alcohol addiction.

The primary cilium as a multiple cellular signaling scaffold in development and disease

  • Ko, Hyuk-Wan
    • BMB Reports
    • /
    • 제45권8호
    • /
    • pp.427-432
    • /
    • 2012
  • Primary cilia, single hair-like appendage on the surface of the most mammalian cells, were once considered to be vestigial cellular organelles for a past century because of their tiny structure and unknown function. Although they lack ancestral motility function of cilia or flagella, they share common ground with multiciliated motile cilia and flagella on internal structure such as microtubule based nine outer doublets nucleated from the base of mother centrioles called basal body. Making cilia, ciliogenesis, in cells depends on the cell cycle stage due to reuse of centrioles for cell division forming mitotic spindle pole (M phase) and assembling cilia from basal body (starting G1 phase and maintaining most of interphase). Ciliary assembly required two conflicting processes such as assembly and disassembly and balance between these two processes determines the length of cilia. Both process required highly conserved transport system to supply needed substance to grow tip of cilia and bring ciliary turnover product back to the base of cilia using motor protein, kinesin and dynein, and transport protein complex, IFT particles. Disruption of ciliary structure or function causes multiple human disorder called ciliopathies affecting disease of diverse ciliated tissues ranging from eye, kidney, respiratory tract and brain. Recent explosion of research on the primary cilia and their involvement on animal development and disease attracts scientific interest on how extensively the function of cilia related to specific cell physiology and signaling pathway. In this review, I introduce general features of primary cilia and recent progress in understanding of the ciliary length control and signaling pathways transduced through primary cilia in vertebrates.