• 제목/요약/키워드: brain stimulation

검색결과 472건 처리시간 0.023초

Neuronal Responses in the Globus Pallidus during Subthalamic Nucleus Electrical Stimulation in Normal and Parkinson's Disease Model Rats

  • Ryu, Sang Baek;Bae, Eun Kyung;Kim, Jinhyung;Hwang, Yong Sup;Im, Changkyun;Chang, Jin Woo;Shin, Hyung-Cheul;Kim, Kyung Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권4호
    • /
    • pp.299-306
    • /
    • 2013
  • Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been widely used as a treatment for the movement disturbances caused by Parkinson's disease (PD). Despite successful application of DBS, its mechanism of therapeutic effect is not clearly understood. Because PD results from the degeneration of dopamine neurons that affect the basal ganglia (BG) network, investigation of neuronal responses of BG neurons during STN DBS can provide informative insights for the understanding of the mechanism of therapeutic effect. However, it is difficult to observe neuronal activity during DBS because of large stimulation artifacts. Here, we report the observation of neuronal activities of the globus pallidus (GP) in normal and PD model rats during electrical stimulation of the STN. A custom artifact removal technique was devised to enable monitoring of neural activity during stimulation. We investigated how GP neurons responded to STN stimulation at various stimulation frequencies (10, 50, 90 and 130 Hz). It was observed that activities of GP neurons were modulated by stimulation frequency of the STN and significantly inhibited by high frequency stimulation above 50 Hz. These findings suggest that GP neuronal activity is effectively modulated by STN stimulation and strongly dependent on the frequency of stimulation.

수면장애에서 비침습적 뇌자극술의 치료 효과 고찰: 경두개자기자극술과 경두개직류전기자극술을 중심으로 (A Review on Effects of Non-Invasive Brain Stimulation in the Treatment of Sleep Disorders)

  • 김신혜;이수지;임수미;윤수정
    • 수면정신생리
    • /
    • 제28권2호
    • /
    • pp.53-69
    • /
    • 2021
  • Sleep disorders, increasingly prevalent in the general population, induce impairment in daytime functioning and other clinical problems. As changes in cortical excitability have been reported as potential pathophysiological mechanisms underlying sleep disorders, multiple studies have explored clinical effects of modulating cortical excitability through non-invasive brain stimulation in treating sleep disorders. In this study, we critically reviewed clinical studies using non-invasive brain stimulation, particularly transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), for treatment of sleep disorders. Previous studies have reported inconsistent therapeutic effects of TMS and tDCS for various kinds of sleep disorders. Specifically, low-frequency repetitive TMS (rTMS) and cathodal tDCS, both of which exert an inhibitory effect on cortical excitability, have shown inconsistent therapeutic effects for insomnia. On the other hand, high-frequency rTMS and anodal tDCS, both of which facilitate cortical excitability, have improved the symptoms of hypersomnia. In studies of restless legs syndrome, high-frequency rTMS and anodal tDCS induced inconsistent therapeutic effects. Single TMS and rTMS have shown differential therapeutic effects for obstructive sleep apnea. These inconsistent findings indicate that the distinctive characteristics of each non-invasive brain stimulation method and specific pathophysiological mechanisms underlying particular sleep disorders should be considered in an integrated manner for treatment of various sleep disorders. Future studies are needed to provide optimized TMS and tDCS protocols for each sleep disorder, considering distinctive effects of non-invasive brain stimulation and pathophysiology of each sleep disorder.

Effect of Sensory Stimulation Type on Brain Activity in Elderly Persons with Mild Cognitive Impairment

  • Koo, Japung;Hwang, Hyunsook
    • 국제물리치료학회지
    • /
    • 제10권1호
    • /
    • pp.1700-1705
    • /
    • 2019
  • Background: Mild cognitive impairment (MCI) is also called as aging related memory damage. Decreased cognitive function due to aging is known to be associated with the frontal lobe. Alpha wave is generated in the dominance in the frontal lobe or a wide range of regions in the brain, it should be doubted that the brain function might be degraded. Objective: To determine the effect of sensory stimulation type on learning and brain activity pattern of elderly persons with MCI. Design: Randomized Controlled Trial (single blind) Methods: Twenty elderly persons aged more than 65 with MCI were randonmized to simultaneous visual/auditory stimulation group (SVASG) and or auditory stimulation group (ASG). Ten peoples were assigned to each group and lectroencephalogram test was performed to individuals. In the electroencephalogram test, electroencephalography of prior to sensory stimulation, and during sensory stimulation were measured to compare brain activity pattern according to the study groups and measurement period. Results: The relative alpha power due to a sensory stimulation type showed that the SVASG significantly decreased in the left frontal lobe and the left parietal lobe statistically compared to those of the ASG while sensory stimulation was given (p<.05). The relative beta power due to a sensory stimulation type showed that the SVASG significantly increased in the left and right frontal lobes, the left and right parietal lobes, and the left temporal lobe statistically compared to those of the ASG while sensory stimulation was given (p<.05). Conclusions: Electroencephalographic analysis showed that the type of sensory stimulation can affect the brain activity pattern. However, the effects were not studied that which brain activity pattern help to improved cognitive function of elderly persons with mild cognitive impairment.

Non-Invasive Neuromodulation for Tinnitus

  • Langguth, Berthold
    • 대한청각학회지
    • /
    • 제24권3호
    • /
    • pp.113-118
    • /
    • 2020
  • Tinnitus is a prevalent disorder that has no cure currently. Within the last two decades, neuroscientific research has facilitated a better understanding of the pathophysiological mechanisms that underlie the generation and maintenance of tinnitus, and the brain and nerves have been identified as potential targets for its treatment using non-invasive brain stimulation methods. This article reviews studies on tinnitus patients using transcranial magnetic stimulation, transcranial electrical stimulation, such as transcranial direct current stimulation, alternating current stimulation, transcranial random noise stimulation as well as transcutaneous vagus nerve stimulation and bimodal combined auditory and somatosensory stimulation. Although none of these approaches has demonstrated effects that would justify its use in routine treatment, the studies have provided important insights into tinnitus pathophysiology. Moreover bimodal stimulation, which has only been developed recently, has shown promising results in pilot trials and is a candidate for further development into a valuable treatment procedure.

Non-Invasive Neuromodulation for Tinnitus

  • Langguth, Berthold
    • Journal of Audiology & Otology
    • /
    • 제24권3호
    • /
    • pp.113-118
    • /
    • 2020
  • Tinnitus is a prevalent disorder that has no cure currently. Within the last two decades, neuroscientific research has facilitated a better understanding of the pathophysiological mechanisms that underlie the generation and maintenance of tinnitus, and the brain and nerves have been identified as potential targets for its treatment using non-invasive brain stimulation methods. This article reviews studies on tinnitus patients using transcranial magnetic stimulation, transcranial electrical stimulation, such as transcranial direct current stimulation, alternating current stimulation, transcranial random noise stimulation as well as transcutaneous vagus nerve stimulation and bimodal combined auditory and somatosensory stimulation. Although none of these approaches has demonstrated effects that would justify its use in routine treatment, the studies have provided important insights into tinnitus pathophysiology. Moreover bimodal stimulation, which has only been developed recently, has shown promising results in pilot trials and is a candidate for further development into a valuable treatment procedure.

Noninvasive Brain Stimulation Using a Modulated Microwave Signal

  • Seo, Taeyoon;Oh, Seongwoog;Jung, Dahee;Huh, Yeowool;Cho, Jeiwon;Kwon, Youngwoo
    • Journal of electromagnetic engineering and science
    • /
    • 제18권1호
    • /
    • pp.70-72
    • /
    • 2018
  • We propose a microwave signal generation system for brain stimulation. The existing brain stimulation system uses a signal of several tens of kHz, and the magnetic field distribution is wide. Microwave is used to locally limit the distribution of the electromagnetic field and to change the action potential of the cell with less power. The switch modulates the microwave signal to obtain a pulse envelope. The action potential of the cell can be controlled to the excitation/inhibition state by adjusting the repetition frequency. These results are confirmed by measuring the cell potential of the mouse brain.

체감각 자극이 뇌손상 후 체성감각경로의 통합성 회복에 미치는 효과 (The Effect of Somatosensory Stimulation on Recovery of the Integrity of the Somatosensory Pathway after Brain Damage)

  • 김대란
    • 대한간호학회지
    • /
    • 제34권7호
    • /
    • pp.1255-1264
    • /
    • 2004
  • Purpose: The purpose of this study was to determine the effect of a 3-week somatosensory stimulation program on the integrity of the somatosensory pathway of patients with brain damage. Method: The sample consisted of two groups of patients with brain damage matched by Glasgow Coma Scale (GCS) scores and age:8 patients with a mean age of 56.75 years who were treated with somatosensory stimulation, and 8 patients with a mean age of 58.88 years, who were not treated with sensory intervention program. A repeated measures matched-control group design was used to assess functional recovery of the brain. The instrument used in this study was SSEP (somatosensory evoked potentials), a neurophysiological parameter, for the integrity of the somatosensory pathway. Results: The hypothesis that patients with brain damage who were treated with the somatosensory stimulation program will show higher SSEP wave form scores than the non-treatment group was supported (3rd week.: U=13.000, p=.014). Additional repeated measures analysis showed that there were no significant differences in recovery trends between the groups (F=1.945, p=.159). Conclusion: This study demonstrates that a somatosensory stimulation program is effective in promoting recovery of the integrity of the somatosensory pathway of patients with brain damage.

쥐에서 말초 자극에 따른 뇌피질 활성화의 자기공명 영상 (MR imaging of cortical activation by painful peripheral stimulation in rats)

  • 이배환;차명훈;정재준;이규홍;이철현;손진훈
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2009년도 추계학술대회
    • /
    • pp.183-185
    • /
    • 2009
  • As imaging technology develops, magnetic resonance imaging (MRI) techniques have contributed to the understanding of brain function by providing anatomical structure of the brain and functional imaging related to information processing. Manganese-enhanced MRI (MEMRI) techniques can provide useful information about functions of the nervous system. However, systematic studies regarding information processing of pain have not been conducted. The purpose of this study was to detect brain activation during painful electrical stimulation using MEMRI with high spatial resolution. Male Sprague-Dawley rats (250-300 g) were divided into 3 groups: normal control, sham stimulation, and electric stimulation. Rats were anesthetized with 2.5% isoflurane for surgery. Polyethylene catheter (PE-10) was placed in the external carotid artery to administrate mannitol and MnCl2. The blood brain barrier (BBB) was broken by 20% D-mannitol under anesthesia mixed with urethane and a-chloralose. The hind limb was electrically stimulated with a 2Hz (10V) frequency while MnCl2 was infused. Brain activation induced by electrical stimulation was detected using a 4.7 T MRI. Remarkable signal enhancement was observed in the primary sensory that corresponds to sensory tactile stimulation at the hind limb region. These results suggest that signal enhancement is related to functional activation following electrical stimulation of the peripheral receptive field.

  • PDF

일주기 리듬과 일주기 유형이 경두개 직류전기자극에 의한 뇌기능 변화에 미치는 영향 탐색 (The impact of functional brain change by transcranial direct current stimulation effects concerning circadian rhythm and chronotype)

  • 정다운;유수민;이현수;한상훈
    • 인지과학
    • /
    • 제33권1호
    • /
    • pp.51-75
    • /
    • 2022
  • 경두개 직류전기자극(transcranial Direct Current Stimulation; tDCS)은 지각, 인지, 운동 등의 뇌기능 향상 및 발달 효과가 입증되며, 다양한 분야에서 활용 및 응용되는 비침습적 뇌자극술이다. tDCS 효과는 뇌의 해부학적 구조, 뇌의 노화 정도 등의 뇌신경활성화 특징에 따라 다르게 나타난다는 연구결과들이 보고되고 있다. 일주기 리듬(circadian rhythm)은 대략 하루 주기의 수면과 각성의 생리적 변화패턴을 의미하며 뇌신경활성화 상태는 일주기 리듬에 따라 다르게 나타난다. 일주기 유형(chronotype)은 하루 중에 발현되는 각성도의 크기에 따라 아침의 각성도가 큰 유형은 아침형으로 저녁의 각성도가 큰 유형은 저녁형으로 나누어진다. 본 연구는 일주기 리듬에 의해 변하는 뇌기능 특징이 tDCS 효과에 미치는 영향을 알아보고자 한다. 총 20명의 건강한 성인 대상으로 실험을 진행하였고, 참가자들은 일주기 유형을 분류하기 위해 아침형-저녁형 설문지에 의해 주간형(아침형, 중간형)과 야간형(저녁형)으로 분류했다. 본 실험은 Zoom 프로그램을 이용하여 참가자와 실험자가 온라인으로 만나서 실험을 진행했다. 실험이 확정된 참가자는 실험자로부터 뇌파 기기, 뇌파 데이터를 획득하는 앱이 있는 핸드폰, 핸드폰 거치대, 뇌자극 기기의 사용방법에 대한 설명을 듣고 기기를 테스트해보고 기기를 전달받았다. 기기사용의 어려움을 가진 2명의 참가자는 대면 실험을 진행하여, 실험자가 기기작동을 하여 실험에 참여했다. 일주기 리듬의 상태에 따른 뇌자극 효과를 알아보기 위해 1주일 간격으로 아침과 저녁에 실험했으며, tDCS 자극 전과 후의 신경활성화 반응의 차이를 뇌파를 이용하여 측정하였다. 뇌자극에 의한 뇌기능 변화를 확인하기 위해 자극 전의 뇌파와 자극 후 뇌파가 다른 패턴을 보이며 분류가 잘되는 지를 예측 정확도로 분석했으며, 뇌기능 특징 변화가 일주기 리듬과 일주기 유형에 따라 다르게 나타나는지 확인하기 위해 각 조건의 분류조건(아침/저녁, 주간형/야간형)에서 추출된 주요 EEG 특성을 비교했다. 54개의 뇌파 특성값을 추출하여 SVM(Support Vector Machine) 기계학습 알고리즘으로 분류 모델을 구축하였고, 구축된 모델을 Leave-One-Out 교차검증(Leave-One-Out Cross-Validation)을 사용하여 자극 전과 후의 뇌파 반응을 예측하는지 평가하였고, 분류예측모델의 주요 예측 인자를 확인하는 주요 특성 분석을 진행하였다. 아침과 저녁의 tDCS에 따른 뇌파 특징을 분류하는 예측 정확도는 모두 98%로 나타났으며, 주간형의 아침 자극 조건과 저녁 자극 조건의 예측 정확도는 92%와 96%이며, 야간형의 아침자극 조건과 저녁 자극 조건의 예측 정확도는 모두 94%로 나타났다. 아침 자극 전과 후의 뇌파를 분류하는 상위 3개의 주요 EEG 특성결과는 주간형과 야간형에 따라 다르게 나타났다. 주간형은 좌측 측두 두정엽과 전전두엽의 뇌파 특성값이 나타났으며, 야간형은 측두 두정엽의 뇌파 특성값들만 나타났다. 저녁 자극전과 후의 뇌파를 분류하는 상위 3개의 주요 EEG 특성 결과 또한 주간형과 야간형에 따라 다르게 나타났다. 주간형은 우측 측두 두정엽과 좌측 전두엽의 뇌파 특성값이 나타났으며, 야간형은 측두 두정엽과 전두엽의 뇌파 특성값이 나타났다. 이와 같은 연구결과는 일주기 리듬과 유형에 따라 아침과 저녁의 뇌기능 특징이 다르게 나타나서 뇌자극 효과가 다르게 나타날 수 있음을 확인한 결과이다. 본 연구의 결과는 효과적인 뇌자극을 위해 개인의 뇌신경 활성화 상태 및 특징에 따라서 뇌자극 프로토콜을 조정할 필요성을 제시한다는 데에 의의를 찾을 수 있다.

태충(太衝)(Liv3)의 전침자극(電鍼刺戟)이 fMRI상 뇌활성(腦活性) 변화(變化)에 미치는 영향(影響) (A fMRI study on the cerebral activity induced by Electro-acupuncture on Taichong(Liv3))

  • 하치홍;이현;임윤경;홍권의;이병렬;김연진
    • Journal of Acupuncture Research
    • /
    • 제20권5호
    • /
    • pp.187-207
    • /
    • 2003
  • Objective: Recently, many studies have showed the evidences of the effect of the acupuncture treatment through scientific methods. One of these methods is functional MRI. We performed electro-acupuncture on Liv3 and observed the change of brain activation using fMRI. Methods: To see the effect of electro-acupuncture stimulation on Liv3. the experiment was carried out on 12 healthy volunteers. using the gradient echo sequence with the 3.0T whole-body MRI system(ISOL). After the needle insertion on right Liv3. 2 Hz of electric stimulation was given for 30 seconds. repeated five times. with 30 seconds' intervals. The Image analysis including motion correction, talairach transformation. and smoothing was done with SPM99. Results : 1. Group averaged brain activation induced by bilateral electro-acupuncture stimulation on Liv3 activates Brodman Area 6, 13, 18, 19, 22, 31, 39, 44, 2. Group averaged brain deactivation induced by bilateral Electro-acupuncture stimulation on Liv3 activates Brodman Area 4, 6, 9, 19, 36, 37, 39. 3. Group averaged brain activation induced by unilateral(right side) electro-acupuncture stimulation on Liv3 activates Brodman Area 2, 3, 6, 9, 10, 22, 40, 42, 43. 4. Group averaged brain deactivation induced by unilateral(right side) electro-acupuncture stimulation on Liv3 activates Brodman Area 6, 18, 19, 28, 30, 31, 35, 37. 5. Brain region activated by motor stimulation activates Brodman Area 4, 6, 13, 19, 42.

  • PDF