• Title/Summary/Keyword: brain stimulation

Search Result 472, Processing Time 0.031 seconds

Effect of Vibroacoustic Stimulation to Electroencephalogram (음향진동자극이 뇌파에 미치는 영향)

  • Moon, D.H.;Choi, M.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.29-36
    • /
    • 2010
  • This study was performed with 5 subjects and used three kinds of music and vibroacoustic stimuli wave based upon each kinds of music. Executing music stimulation, vibro tactile and acoustic wave stimulation to human body were performed. Then measured brain waves were analyzed under each condition including before stimulation, stimulation 1, and stimulation 2. Effects by stimulation results could be studied with experiments and summarized results are followings. 1. It may be concluded that effects on brain waves by music and vibroacoustic stimulation might differ under different situations such as stimulation types with vibroacoustic equipment, human body and mental conditions when measuring, etc.. 2. During stimuli by using music A, B, and C, the effect of $\alpha$ wave, $\beta$ wave, and SMR wave power values show same tendency to the subject c but music C had very different tendency during vibroacoustic stimuli. 3. During vibroacoustic stimuli by applying the signals of music C, because SMR wave power value was continually increased with consistency comparing to Bst, this can be estimated that an application of inducing mind concentration condition would be possible under relaxed body and mind conditions. 4. To secure data significance, all measured data need to be tested statistically whether data would be interrelated or not.

Time Courses of pCREB Expression after Dopaminergic Stimulation by Apomorphine in Mouse Brain

  • Jang, Choon-Gon;Lee, Seok-Yong;Lee, Han-Kyu;Suh, Hong-Won;Song, Dong-Keun
    • Archives of Pharmacal Research
    • /
    • v.25 no.3
    • /
    • pp.370-374
    • /
    • 2002
  • Administration of dopamine agonist, apomorphine (2 mg/kg, s.c.), produces cage climbing behavior in mice that exhibit typical dopaminergic stimulation. The present study investigated the pCREB expression level in several brain regions following apomorphine treatment in order to determine whether the increased the dopaminergic activation produced by apomorphine accompanies the changes in pCREB immunoreactivity. A mouse brain was removed at 0min, 10 min, 30 min, 1 h, 2 h, 7 h, and 24 h after apomorphine treatment. The brain tissue was fixed by an intracardiac perfusion with ice-cold 4% paraformaldehyde in PBS. Immunohistochemical study was conducted using the ABC-DAB method. The data showed that the immunoreactivity of pCREB increased in the striatum, nucleus-accumbens, piriform cortex and the dentate gyrus of the hippocampus of a mouse brain 30 min after the apomorphine treatment. Increased immunoreactivity began to diminish 2 h after the apomorphine treatment in all the brain regions measured. The time course for the pCREB immunoreactivity was similar to the behavioral response induced by the apomorphine treatment. These results suggest that activation of the dopamine receptor is accompanied by an increase in pCREB expression in the mouse brain.

Outcome of Pallidal Deep Brain Stimulation in Meige Syndrome

  • Ghang, Ju-Young;Lee, Myung-Ki;Jun, Sung-Man;Ghang, Chang-Ghu
    • Journal of Korean Neurosurgical Society
    • /
    • v.48 no.2
    • /
    • pp.134-138
    • /
    • 2010
  • Objective : Meige syndrome is the combination of blepharospasm and oromandibular dystonia. We assessed the surgical results of bilateral globus pallidus internus (GPi) deep brain stimulation (DBS) in patients with medically refractory Meige syndrome. Methods : Eleven patients were retrospectively analyzed with follow-ups of more than 12 months. The mean follow-up period was $23.1{\pm}6.4$ months. The mean age at time of surgery was $58.0{\pm}7.8$ years. The mean duration of symptoms was $8.7 {\pm}7.6$ years. DBS electrodes were placed under local anesthesia using microelectrode recording and stimulation. After $2.4{\pm}1.3$ days of trial tests, the stimulation device was implanted under general anesthesia. Patients were evaluated using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS). Results : BFMDRS total movement scores improved by 59.8%, 63.5%, 74.1%, 74.5%, and 85.5% during the immediate postoperative period of test stimulation, 3, 6, 12, and 24 months (n = 5) after surgery, respectively. The BFMDRS total movement scores were reduced gradually and the results reached statistical significance in the postoperative period (test period, p < 0.001; 3 months, p < 0.001; 6 months, p = 0.003; 12 months, p < 0.001; 24 months, p = 0.042). There was no statistical difference between 12 months and 24 months. BFM subscores improved by 63.3% for the eyes, 80.9% for the mouth, 68.4% for speech/swallowing, and 87.9% for the neck at 12 months after surgery. The adverse effects were insignificant. Conclusion : The bilateral GPi-DBS can be effective for the treatment of intractable Meige syndrome without significant side effects.

Change of Extracellular Glutamate Level in Striatum during Deep Brain Stimulation of the Entopeduncular Nucleus in Rats

  • Lee, Hyun-ju;Sung, Jae Hoon;Hong, Jae Taek;Kim, Il Sup;Yang, Seung Ho;Cho, Chul Bum
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.2
    • /
    • pp.166-174
    • /
    • 2019
  • Objective : Globus pallidus interna (GPi) is acknowledged as an essential treatment for advanced Parkinson's disease (PD). Nonetheless, the neurotransmitter study about its results is undiscovered. The goal of this research was to examine influences of entopeduncular nucleus (EPN) stimulation, identical to human GPi, in no-lesioned (NL) rat and 6-hydroxydopamine (6-HD)-lesioned rat on glutamate change in the striatum. Methods : Extracellular glutamate level changes in striatum of NL category, NL with deep brain stimulation (DBS) category, 6-HD category, and 6-HD with DBS category were examined using microdialysis and high-pressure liquid chromatography. Tyrosine hydroxylase (TH) immunoreactivities in substantia nigra and striatum of the four categories were also analyzed. Results : Extracellular glutamate levels in the striatum of NL with DBS category and 6-HD with DBS category were significantly increased by EPN stimulation compared to those in the NL category and 6-HD category. EPN stimulation had no significant effect on the expression of TH in NL or 6-HD category. Conclusion : Clinical results of GPi DBS are not only limited to direct inhibitory outflow to thalamus. They also include extensive alteration within basal ganglia.

A Development of Remote Medical Treatment System for Stroke Recovery using ZigBee-based Wireless Brain Stimulator and Internet (ZigBee 기반의 무선 뇌 자극기와 네트워크를 이용한 원격 뇌졸중 회복 시스템의 개발)

  • Kim, G.H.;Ryu, M.H.;Kim, J.J.;Kim, N.G.;Yang, Y.S.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.514-517
    • /
    • 2008
  • Ubiquitous healthcare (U-healthcare) system is one of potential applications of embedded system. Conventional U-healthcare systems are used in health monitoring or chronic disease care based on measuring and transmission of various vital signs. However, future U-healthcare system can be of benefit to more people such as stroke patients which have limited activity by providing them proper medical care as well as continuous monitoring. Recently, an electric brain stimulation treatments have been found to be a better way compared to conventional ones and many are interested in using the method toward the treatment of stroke. In this study, we proposed a remote medical treatment system using ZigBee-based wireless electric brain stimulator that can help them to get a treatment without visiting their doctors. The developed remote medical treatment system connects the doctors to the brain stimulator implanted in the patients via the internet and ZigBee communication built in the brain stimulator. Also, the system receive personal information of the connected patients and cumulate the total records of electric stimulation therapy in a database. Doctors can easily access the information for better treatment planning with the help of graphical visualization tools and management software. The developed remote medical treatment system can extend their coverage to outdoors being networked with hand-held devices through ZigBee.

A Study on EEG bionic signals management for using the non-linear analysis methods (라벤더 향 자극에 대한 EEG 생체신호의 비선형 분석)

  • 강근;안광민;이형
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2002.11a
    • /
    • pp.461-467
    • /
    • 2002
  • Signals reduced from the brain had been considered as a noise that is caused by the stochastic process until 1980. The recent non-linear dynamic theory researches, however, reported that these signals are meaningful and deterministic chaos signals in which they show how the brain deals with various information Since this report, a wide range of researches has been carried out and still in progress. Thus, by using the correlational dimension, one of the non-linear analytical methods, the characteristics of the brain signals can be analyzed. In this thesis, the scent of lavender, which stimulates the olfactory sense, is introduced to measure EEG with the International 10-20 electrode system on 16 channels, and to analyze the interrelationship between the original signals before the stimulation and the changed signals after the stimulation. Finally, the effect of the scent stimulation to the brain is analyzed. The purpose of this thesis is to apply these analyzed results to the computerized mapping of the brain signals and possible ways of specifying the source of the brain signals through various medical applications.

  • PDF

A Study on EEG bionic signals management for using the non-linear analysis methods (라벤더 향 자극에 대한 EEG 생체신호의 비선형 분석)

  • Kang, Kun;Ahn, Kwang-Min;Lee, Hyoung
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2002.11a
    • /
    • pp.461-467
    • /
    • 2002
  • Signals produced from the brain had been considered as a noise that is caused by the stochastic process until 1980. The recent non-linear dynamic theory researches, however, reported that these signals are meaningful and deterministic chaos signals in which they show how the brain deals with various information Since this report a wide range of researches has been carried out and still in progress. Thus, by using the correlational dimension, one of the non-linear analytical methods, the characteristics of the brain signals can be analyzed. In this thesis, the scent of lavender, which stimulates the olfactory sense, is introduced to measure EEG with the International 10-20 electrode system on 16 channels, and to analyze the interrelationship between the original signals before the stimulation and the changed signals after the stimulation. Finally, the effect of the scent stimulation to the brain is analyzed. The purpose of this thesis is to apply these analyzed results to the computerized mapping of the brain signals and possible ways of specifying the source of the brain signals through various medical applications.

  • PDF

Nonlinear analysis of the effects on the brain waves of the stimulation on specific area of the sole of the foot (발바닥 특정 부위 자극이 뇌파에 미치는 효과에 대한 비선형 분석)

  • Oh, Yeong-seon;Oh, Min-seok;Song, Tae-won
    • Journal of Haehwa Medicine
    • /
    • v.10 no.1
    • /
    • pp.365-374
    • /
    • 2001
  • The brain is one of the most complex systems in nature. Brain waves, or the "EEG", are electrical signals that can be recorded from the brain, either directly or through the scalp. The kind of brain wave recorded depends on the behavior of the animal, and is the visible evidence of the kind of neuronal (brain cell) processing necessary for that behavior. But, EEG had been considered as a virtually infinite-dimensional random signal. However, nonlinear dynamics light on dynamical aspects of the human EEG. The methods of nonlinear dynamics provide excellent tolls for the study of multi-variable, complex system such as EEG. In this study, 20 persons seperated in 2 groups were examined with EEG, one group stimulated on specific area of the sole of the foot with footbed inside the shoes. This experiment resulted in at the group stimulated on specific area of the sole of the foot correlation dimension of P4 and O1 channels increased significantly. Therefore. we obserbed that stimulation on specific area of the body had a constant effections on the specific channels.

  • PDF

The effect of Environmental Enrichment and Peripheral Nerve Electrical Stimulation on Functional Recovery after Brain in rats (환경강화와 말초신경 전기자극이 뇌손상 백서의 기능회복에 미치는 영향)

  • Kim, Sa-Youl;Kim, Tae-Youl;Oh, Myung-Hwa;Kim, Young-Eok;Chang, Mee-Kyung;Sim, Ki-Cheol;Kim, Gye-Yeop
    • The Journal of Korean Physical Therapy
    • /
    • v.19 no.1
    • /
    • pp.33-44
    • /
    • 2007
  • Purpose: To investigate and analyze effects of environmental enrichment(EE) and nerve stimulation that follows in application times with change of functional recovery(1, 3, 7 and 14 days). Methods: Focal ischemic brain injury was produced in 100 Sprauge-Dawley rats through middle cerebral artery occlusion(MCAO). Neurobehavioral assessment were selected, such as tilting plane testing, horizontal wire testing, vestibulomotor function testing and complex neuromotor function test, then they were randomly divided into five groups; Group I : Sham group, Group II: MCAO group, Group III: MCAO and ES group, Group IV: MCAO and EE group, Group V: MCAO and EE and ES group. Results: In neurobehavioral assessment, group V were significantly difference from other groups on between-subject effects. Conclusion: Our findings suggest that in focal ishemic brain injury, combined environmental enrichment and peripheral nerve electrical stimulation is more improved that the improvement of exercise function recovery than non treatment group.

  • PDF

Automatic measurement of voluntary reaction time after audio-visual stimulation and generation of synchronization signals for the analysis of evoked EEG (시청각자극 후의 피험자의 자의적 반응시간의 자동계측과 유발뇌파분석을 위한 동기신호의 생성)

  • 김철승;엄광문;손진훈
    • Science of Emotion and Sensibility
    • /
    • v.6 no.4
    • /
    • pp.15-23
    • /
    • 2003
  • Recently, there have been many attempts to develop BCI (brain computer interface) based on EEG (electroencephalogram). Measurement and analysis of EEG evoked by particular stimulation is important for the design of brain wave pattern and interface of BCI. The purpose of this study is to develop a general-purpose system that measures subject's reaction time after audio-visual stimulation which can work together with any other biosignal measurement systems. The entire system is divided into four modules, which are stimulation signal generation, reaction time measurement, evoked potential measurement and synchronization. Stimulation signal generation module was implemented by means of Flash. Measurement of the reaction time (the period between the answer request and the subject reaction) was achieved by self-made microcontroller system. EEG measurement was performed using the ready-made hardware and software without any modification. Synchronization of all modules was achieved by, first, the black-and-white signals on the stimulation screen synchronized with the problem presentation and the answer request, second, the photodetectors sensing the signals. The proposed method offers easy design of purpose-specific system only by adding simple modules (reaction time measurement, synchronization) to the ready-made stimulation and EEG system, and therefore, it is expected to accelerate the researches requiring the measurement of evoked response and reaction time.

  • PDF