• Title/Summary/Keyword: brain network

Search Result 389, Processing Time 0.045 seconds

Inferring genetic regulatory networks of the inflammatory bowel disease in human peripheral blood mononuclear cells

  • Kim, Jin-Ki;Lee, Do-Heon;Yi, Gwan-Su
    • Bioinformatics and Biosystems
    • /
    • v.2 no.2
    • /
    • pp.71-74
    • /
    • 2007
  • Cell phenotypes are determined by groups of functionally related genes. Microarray profiling of gene expression provides us response of cellular state to its perturbation. Several methods for uncovering a cellular network show reliable network reconstruction. In this study, we present reconstruction of genetic regulatory network of inflammation bowel disease in human peripheral blood mononuclear cell. The microarray based on Affymetrix Gene Chip Human Genome U133 Array Set HG-U133A is processed and applied network reconstruction algorithm, ARACNe. As a result, we will show that inferred network composed of 450 nodes and 2017 edges is roughly scale-free network and hierarchical organization. The major hub, CCNL2 (cyclin A2), in inferred network is shown to be associated with inflammatory function as well as apoptotic function.

  • PDF

Inverse Estimation of Surface Temperature Using the RBF Network (RBF Network 를 이용한 표면온도 역추정에 관한 연구)

  • Jung, Bup-Sung;Lee, Woo-Il
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1183-1188
    • /
    • 2004
  • The inverse heat conduction problem (IHCP) is a problem of estimating boundary condition from temperature measurement at one or more interior points. Neural networks are general information processing systems inspired by the connectionist theory of human brain. By properly training the network by the learning rule, the neural network method can handle many non-linear or other complex problems. In this work, neural network is applied to complicated inverse heat conduction problems. Efficiency of the procedure is enhanced by incorporating the radial basis functions (RBF). The RBF is trained faster than other neural network and can find smooth solution. In order to demonstrate the effectiveness of the current scheme, a typical one-dimensional IHCP is considered. At one surface, the temperature as well as the heat flux is known. The unknown temperature of interest is estimated on the other side of the slab. The results from the proposed method based on RBF neural network are compared with the conventional method.

  • PDF

Cortical Thickness of Resting State Networks in the Brain of Male Patients with Alcohol Dependence (남성 알코올 의존 환자 대뇌의 휴지기 네트워크별 피질 두께)

  • Lee, Jun-Ki;Kim, Siekyeong
    • Korean Journal of Biological Psychiatry
    • /
    • v.24 no.2
    • /
    • pp.68-74
    • /
    • 2017
  • Objectives It is well known that problem drinking is associated with alterations of brain structures and functions. Brain functions related to alcohol consumption can be determined by the resting state functional connectivity in various resting state networks (RSNs). This study aims to ascertain the alcohol effect on the structures forming predetermined RSNs by assessing their cortical thickness. Methods Twenty-six abstinent male patients with alcohol dependence and the same number of age-matched healthy control were recruited from an inpatient mental hospital and community. All participants underwent a 3T MRI scan. Averaged cortical thickness of areas constituting 7 RSNs were determined by using FreeSurfer with Yeo atlas derived from cortical parcellation estimated by intrinsic functional connectivity. Results There were significant group differences of mean cortical thicknesses (Cohen's d, corrected p) in ventral attention (1.01, < 0.01), dorsal attention (0.93, 0.01), somatomotor (0.90, 0.01), and visual (0.88, 0.02) networks. We could not find significant group differences in the default mode network. There were also significant group differences of gray matter volumes corrected by head size across the all networks. However, there were no group differences of surface area in each network. Conclusions There are differences in degree and pattern of structural recovery after abstinence across areas forming RSNs. Considering the previous observation that group differences of functional connectivity were significant only in networks related to task-positive networks such as dorsal attention and cognitive control networks, we can explain recovery pattern of cognition and emotion related to the default mode network and the mechanisms for craving and relapse associated with task-positive networks.

Combined Analysis Using Functional Connectivity of Default Mode Network Based on Independent Component Analysis of Resting State fMRI and Structural Connectivity Using Diffusion Tensor Imaging Tractography (휴지기 기능적 자기공명영상의 독립성분분석기법 기반 내정상태 네트워크 기능 연결성과 확산텐서영상의 트랙토그래피 기법을 이용한 구조 연결성의 통합적 분석)

  • Choi, Hyejeong;Chang, Yongmin
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.684-694
    • /
    • 2021
  • Resting-state Functional Magnetic Resonance Imaging(fMRI) data detects the temporal correlations in Blood Oxygen Level Dependent(BOLD) signal and these temporal correlations are regarded to reflect intrinsic cortical connectivity, which is deactivated during attention demanding, non-self referential tasks, called Default Mode Network(DMN). The relationship between fMRI and anatomical connectivity has not been studied in detail, however, the preceded studies have tried to clarify this relationship using Diffusion Tensor Imaging(DTI) and fMRI. These studies use method that fMRI data assists DTI data or vice versa and it is used as guider to perform DTI tractography on the brain image. In this study, we hypothesized that functional connectivity in resting state would reflect anatomical connectivity of DMN and the combined images include information of fMRI and DTI showed visible connection between brain regions related in DMN. In the previous study, functional connectivity was determined by subjective region of interest method. However, in this study, functional connectivity was determined by objective and advanced method through Independent Component Analysis. There was a stronger connection between Posterior Congulate Cortex(PCC) and PHG(Parahippocampa Gyrus) than Anterior Cingulate Cortex(ACC) and PCC. This technique might be used in several clinical field and will be the basis for future studies related to aging and the brain diseases, which are needed to be translated not only functional connectivity, but structural connectivity.

Changes of Motor Deactivation Regions in Patients with Intracranial Lesions

  • Lee, Seung Hwan;Koh, Jun Seok;Ryu, Chang-Woo;Jahng, Geon Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.54 no.6
    • /
    • pp.453-460
    • /
    • 2013
  • Objective : There is a rich literature confirming the default mode network found compatible with task-induced deactivation regions in normal subjects, but few investigations of alterations of the motor deactivation in patients with intracranial lesions. Therefore, we hypothesized that an intracranial lesion results in abnormal changes in a task-induced deactivation region compared with default mode network, and these changes are associated with specific attributes of allocated regions. Methods : Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) during a motor task were obtained from 27 intracranial lesion patients (mean age, 57.3 years; range 15-78 years) who had various kinds of brain tumors. The BOLD fMRI data for each patient were evaluated to obtain activation or deactivation regions. The distinctive deactivation regions from intracranial lesion patients were evaluated by comparing to the literature reports. Results : There were additive deactivated regions according to intracranial lesions : fusiform gyrus in cavernous hemangioma; lateral occipital gyrus in meningioma; crus cerebri in hemangiopericytoma; globus pallidus, lateral occipital gyrus, caudate nucleus, fusiform gyrus, lingual gyrus, claustrum, substantia nigra, subthalamic nucleus in GBM; fusiform gyrus in metastatic brain tumors. Conclusion : There is increasing interest in human brain function using fMRI. The authors report the brain function migrations and changes that occur in patients with intracranial lesions.

A Rule-based Integration of Neural Network Modules based on Cellular Automata for Sensory-Motor Controller (센서-모터 제어기를 위한 셀룰라 오토마타 기반 신경망 모듈의 규칙기반 결합)

  • Kim, Kyung-Joong;Song, Geum-Beom;Cho, Sung-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.19-26
    • /
    • 2002
  • There are some difficulties to construct a sensory-motor controller for an autonomous mobile robot such as coordinating the mechanics and control system parts of the robot, and managing interaction with external environments. In previous research, we evolve the CAM-Brain, neural networks based on cellular automata, to control an autonomous mobile robot. In this paper, we propose the method of combining multi-modules evolved to do simple behavior in order to making more sophisticated behaviors because the controller composed of one neural network module is difficult to make complex behaviors. In experimental results, we can get the controller adapting to more complex environments by combining CAM-Brain modules evolved to do simple behavior by rule-based approach.

Combination of Brain Cancer with Hybrid K-NN Algorithm using Statistical of Cerebrospinal Fluid (CSF) Surgery

  • Saeed, Soobia;Abdullah, Afnizanfaizal;Jhanjhi, NZ
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.120-130
    • /
    • 2021
  • The spinal cord or CSF surgery is a very complex process. It requires continuous pre and post-surgery evaluation to have a better ability to diagnose the disease. To detect automatically the suspected areas of tumors and symptoms of CSF leakage during the development of the tumor inside of the brain. We propose a new method based on using computer software that generates statistical results through data gathered during surgeries and operations. We performed statistical computation and data collection through the Google Source for the UK National Cancer Database. The purpose of this study is to address the above problems related to the accuracy of missing hybrid KNN values and finding the distance of tumor in terms of brain cancer or CSF images. This research aims to create a framework that can classify the damaged area of cancer or tumors using high-dimensional image segmentation and Laplace transformation method. A high-dimensional image segmentation method is implemented by software modelling techniques with measures the width, percentage, and size of cells within the brain, as well as enhance the efficiency of the hybrid KNN algorithm and Laplace transformation make it deal the non-zero values in terms of missing values form with the using of Frobenius Matrix for deal the space into non-zero values. Our proposed algorithm takes the longest values of KNN (K = 1-100), which is successfully demonstrated in a 4-dimensional modulation method that monitors the lighting field that can be used in the field of light emission. Conclusion: This approach dramatically improves the efficiency of hybrid KNN method and the detection of tumor region using 4-D segmentation method. The simulation results verified the performance of the proposed method is improved by 92% sensitivity of 60% specificity and 70.50% accuracy respectively.

Optimize KNN Algorithm for Cerebrospinal Fluid Cell Diseases

  • Soobia Saeed;Afnizanfaizal Abdullah;NZ Jhanjhi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • Medical imaginings assume a important part in the analysis of tumors and cerebrospinal fluid (CSF) leak. Magnetic resonance imaging (MRI) is an image segmentation technology, which shows an angular sectional perspective of the body which provides convenience to medical specialists to examine the patients. The images generated by MRI are detailed, which enable medical specialists to identify affected areas to help them diagnose disease. MRI imaging is usually a basic part of diagnostic and treatment. In this research, we propose new techniques using the 4D-MRI image segmentation process to detect the brain tumor in the skull. We identify the issues related to the quality of cerebrum disease images or CSF leakage (discover fluid inside the brain). The aim of this research is to construct a framework that can identify cancer-damaged areas to be isolated from non-tumor. We use 4D image light field segmentation, which is followed by MATLAB modeling techniques, and measure the size of brain-damaged cells deep inside CSF. Data is usually collected from the support vector machine (SVM) tool using MATLAB's included K-Nearest Neighbor (KNN) algorithm. We propose a 4D light field tool (LFT) modulation method that can be used for the light editing field application. Depending on the input of the user, an objective evaluation of each ray is evaluated using the KNN to maintain the 4D frequency (redundancy). These light fields' approaches can help increase the efficiency of device segmentation and light field composite pipeline editing, as they minimize boundary artefacts.

Research on development of electroencephalography Measurement and Processing system (뇌전도 측정 및 처리 시스템 개발에 관한 연구)

  • Doo-hyun Lee;Yu-jun Oh;Jin-hee Hong;Jun-su chae;Young-gyu Choi
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.38-46
    • /
    • 2024
  • In general, EEG signal analysis has been the subject of several studies due to its ability to provide an objective mode of recording brain stimulation, which is widely used in brain-computer interface research with applications in medical diagnosis and rehabilitation engineering. In this study, we developed EEG reception hardware to measure electroencephalograms and implemented a processing system, classifying it into server and data processing. It was conducted as an intermediate-stage research on the implementation of a brain-computer interface using electroencephalograms, and was implemented in the form of predicting the user's arm movements according to measured electroencephalogram data. Electroencephalogram measurements were performed using input from four electrodes through an analog-to-digital converter. After sending this to the server through a communication process, we designed and implemented a system flow in which the server classifies the electroencephalogram input using a convolutional neural network model and displays the results on the user terminal.

Development of the Brain Compatibility Index Equation for Brain-based Analysis of Teaching-Learning Program in Science (과학 교수-학습 프로그램의 두뇌기반 분석을 위한 두뇌맞춤지수 산출식 개발)

  • Lee, Il-Sun;Lee, Jun-Ki;Kwon, Yong-Ju
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.8
    • /
    • pp.1031-1043
    • /
    • 2010
  • The purpose of this study was to develop the brain compatibility index equation for the brain-based analysis method of science teaching-learning program. To develop the index equation, one sample unit in middle school science programs was selected and analyzed by the brain-based analysis frame (CORE Brain Map). Then, the index equation was derived by the CORE Brain Map. In addition, four sample units in elementary science programs were selected to validate the brain compatibleness index equation. From the random network theory of Erdos and Renyi, this study derived the brain compatibility index equation; (BCI=$\frac{L_o}{11(N_o-1)}{\cdot}{\sum}\limits_{i=1}^4l_iw_i$) for quantitative analysis of science teaching-learning program. With this equation, this study could find the quantitative difference among the teaching-learning programs through the unit and curriculum. Brain-based analysis methods for the qualitative and quantitative analysis of science teaching-learning program, which was developed in this study is expected, to be a useful application to analyze and diagnose various science teaching-learning programs.